Most cited article - PubMed ID 17249339
A comparison of the intraspecific variability of Phlebotomus sergenti Parrot, 1917 (Diptera: Psychodidae)
Phlebotomus sergenti Parrot, 1917 is the main vector of Leishmania tropica; however, its broad geographical range and molecular heterogeneity suggest possible variability in vector competence. We infected laboratory-reared P. sergenti originating from Turkey and Israel to compare their susceptibility to L. tropica. In both tested groups, heavy late-stage infections with the presence of metacyclic forms and colonization of the stomodeal valve were observed. The similar development of Leishmania in both sand fly colonies indicates that the different geographical origin of P. sergenti is not reflected by a different vector competence to L. tropica. Additionally, we tested the effect of the gregarine Psychodiella sergenti on L. tropica coinfections; no apparent differences were found between P. sergenti infected or not infected by gregarines.
- Keywords
- Leishmania tropica, Phlebotomus sergenti, coinfection, gregarine, vector competence,
- MeSH
- Apicomplexa physiology MeSH
- Insect Vectors parasitology MeSH
- Host-Parasite Interactions * MeSH
- Leishmania tropica growth & development MeSH
- Psychodidae parasitology MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
BACKGROUND: Phlebotomine sand flies are incriminated in the transmission of several human and veterinary pathogens. To elucidate their role as vectors, proper species identification is crucial. Since traditional morphological determination is based on minute and often dubious characteristics on their head and genitalia, which require certain expertise and may be damaged in the field-collected material, there is a demand for rapid, simple and cost-effective molecular approaches. METHODS: Six laboratory-reared colonies of phlebotomine sand flies belonging to five species and four subgenera (Phlebotomus, Paraphlebotomus, Larroussius, Adlerius) were used to evaluate the discriminatory power of matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). Various storage conditions and treatments, including the homogenization in either distilled water or given concentrations of formic acid, were tested on samples of both sexes. RESULTS: Specimens of all five analysed sand fly species produced informative, reproducible and species-specific protein spectra that enabled their conclusive species identification. The method also distinguished between two P. sergenti colonies originating from different geographical localities. Protein profiles within a species were similar for specimens of both sexes. Tested conditions of specimen storage and sample preparation give ground to a standard protocol that is generally applicable on analyzed sand fly specimens. CONCLUSIONS: Species identification of sand flies by MALDI-TOF MS is feasible and represents a novel promising tool to improve biological and epidemiological studies on these medically important insects.
- MeSH
- Insect Proteins metabolism MeSH
- Proteomics MeSH
- Psychodidae classification metabolism MeSH
- Cluster Analysis MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Insect Proteins MeSH
BACKGROUND: Phlebotomus orientalis Parrot (Diptera: Psychodidae) is the main vector of visceral leishmaniasis (VL) caused by Leishmania donovani in East Africa. Here we report on life cycle parameters and susceptibility to L. donovani of two P. orientalis colonies originating from different sites in Ethiopia: a non-endemic site in the lowlands - Melka Werer (MW), and an endemic focus of human VL in the highlands - Addis Zemen (AZ). METHODOLOGY/PRINCIPAL FINDINGS: Marked differences in life-cycle parameters between the two colonies included distinct requirements for larval food and humidity during pupation. However, analyses using Random Amplified Polymorphic DNA (RAPD) PCR and DNA sequencing of cytB and COI mitochondrial genes did not reveal any genetic differences. F1 hybrids developed successfully with higher fecundity than the parental colonies. Susceptibility of P. orientalis to L. donovani was studied by experimental infections. Even the lowest infective dose tested (2×10(3) per ml) was sufficient for successful establishment of L. donovani infections in about 50% of the P. orientalis females. Using higher infective doses, the infection rates were around 90% for both colonies. Leishmania development in P. orientalis was fast, the presence of metacyclic promastigotes in the thoracic midgut and the colonization of the stomodeal valve by haptomonads were recorded in most P. orientalis females by day five post-blood feeding. CONCLUSIONS: Both MW and AZ colonies of P. orientalis were highly susceptible to Ethiopian L. donovani strains. As the average volume of blood-meals taken by P. orientalis females are about 0.7 µl, the infective dose at the lowest concentration was one or two L. donovani promastigotes per sand fly blood-meal. The development of L. donovani was similar in both P. orientalis colonies; hence, the absence of visceral leishmaniasis in non-endemic area Melka Werer cannot be attributed to different susceptibility of local P. orientalis populations to L. donovani.
- MeSH
- Leishmania donovani pathogenicity MeSH
- Phlebotomus genetics parasitology physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia MeSH