Nejvíce citovaný článek - PubMed ID 17363320
Investigation of Paradiplozoon homoion (Monogenea, Diplozoidae) life cycle under experimental conditions
Hybrid generations usually face either a heterosis advantage or a breakdown, that can be expressed by the level of parasite infection in hybrid hosts. Hybrids are less infected by parasites than parental species (especially F1 generations) or more infected than parental species (especially post-F1 generations). We performed the experiment with blood-feeding gill parasite Paradiplozoon homoion (Monogenea) infecting leuciscid species, Abramis brama and Rutilus rutilus, their F1 generation and two backcross generations. Backcross generations tended to be more parasitized than parental lines and the F1 generation. The number of differentially expressed genes (DEGs) was lower in F1 hybrids and higher in backcross hybrids when compared to each of the parental lines. The main groups of DEGs were shared among lines; however, A. brama and R. rutilus differed in some of the top gene ontology (GO) terms. DEG analyses revealed the role of heme binding and erythrocyte differentiation after infection by blood-feeding P. homoion. Two backcross generations shared some of the top GO terms, representing mostly downregulated genes associated with P. homoion infection. KEGG analysis revealed the importance of disease-associated pathways; the majority of them were shared by two backcross generations. Our study revealed the most pronounced DEGs associated with blood-feeding monogeneans in backcross hybrids, potentially (but not exclusively) explainable by hybrid breakdown. The lower DEGs reported in F1 hybrids being less parasitized than backcross hybrids is in line with the hybrid advantage.
- Klíčová slova
- Monogenea, Paradiplozoon homoion, RNA seq, differential gene expression, freshwater fish, hybrid breakdown, hybrid heterosis, hybridization,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Monogeneans, in general, show a range of unique adaptations to a parasitic lifestyle, making this group enormously diverse. Due to their unique biological properties, diplozoid monogeneans represent an attractive model group for various investigations on diverse biological interactions. However, despite numerous studies, there are still gaps in our knowledge of diplozoid biology and morphofunctional adaptations. RESULTS: In this study, we provide a comprehensive microscopic analysis of systems/structures involved in niche searching, sensing and self-protection against the host environment, and excretory/secretory processes in Eudiplozoon nipponicum. Freeze-etching enabled us to detect syncytium organisational features not visible by TEM alone, such as the presence of a membrane subjacent to the apical plasma membrane (separated by a dense protein layer) and a lack of basal plasma membrane. We located several types of secretory/excretory vesicles and bodies, including those attached to the superficial membranes of the tegument. Giant unicellular glands were seen accumulating predominantly in the apical forebody and hindbody haptor region. Muscle layer organisation differed from that generally described, with the outer circular and inner longitudinal muscles being basket-like interwoven by diagonal muscles with additional perpendicular muscles anchored to the tegument. Abundant muscles within the tegumentary ridges were detected, which presumably assist in fixing the parasite between the gill lamellae. Freeze-etching, alongside transmission electron and confocal microscopy with tubulin labelling, enabled visualisation of the protonephridia and nervous system, including the peripheral network and receptor innervation. Three types of receptor were identified: 1) uniciliated sensory endings with a subtle (or missing) tegumentary rim, 2) obviously raised uniciliated receptors with a prominent tegumentary rim (packed with massive innervation and muscles) and 3) non-ciliated papillae (restricted to the hindbody lateral region). CONCLUSIONS: This study points to specific morphofunctional adaptations that have evolved in diplozoid monogeneans to confront their fish host. We clearly demonstrate that the combination of different microscopic techniques is beneficial and can reveal hidden differences, even in much-studied model organisms such as E. nipponicum.
- Klíčová slova
- Excretory system, Freeze-etching, Host-parasite interactions, Immunofluorescence, Musculature, Nervous system, Secretion, Sensory structures, Tegument, Ultrastructure,
- Publikační typ
- časopisecké články MeSH
Diplozoidae (Monogenea) are blood-feeding freshwater fish gill ectoparasites with extraordinary body architecture and a unique sexual behaviour in which two larval worms fuse and transform into one functioning individual. In this study, we describe the body organisation of Paradiplozoon homoion adult stage using a combined approach of confocal laser scanning and electron microscopy, with emphasis on the forebody and hindbody. Special attention is given to structures involved in functional adaptation to ectoparasitism, i.e. host searching, attachment and feeding/metabolism. Our observations indicate clear adaptations for blood sucking, with a well-innervated mouth opening surrounded by sensory structures, prominent muscular buccal suckers and a pharynx. The buccal cavity surface is covered with numerous tegumentary digitations that increase the area in contact with host tissue and, subsequently, with its blood. The buccal suckers and the well-innervated haptor (with sclerotised clamps controlled by noticeable musculature) cooperate in attaching to and moving over the host. Putative gland cells accumulate in the region of apical circular structures, pharynx area and in the haptor middle region. Paired club-shaped sacs lying laterally to the pharynx might serve as secretory reservoirs. Furthermore, we were able to visualise the body wall musculature, including peripheral innervation, the distribution of uniciliated sensory structures essential for reception of external environmental information, and flame cells involved in excretion. Our results confirm in detail that P. homoion displays a range of sophisticated adaptations to an ectoparasitic life style, characteristic for diplozoid monogeneans.
- MeSH
- infestace ektoparazity parazitologie MeSH
- interakce hostitele a parazita MeSH
- konfokální mikroskopie MeSH
- mikroskopie elektronová rastrovací MeSH
- ploštěnci anatomie a histologie patogenita MeSH
- ryby parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Developmental stages of the diplozoid monogenean Eudiplozoon nipponicum, comprising oncomiracidium, diporpa, juvenile, and adult, were investigated using light and scanning electron microscopy in conjunction with confocal scanning laser microscopy in order to examine body organization and identify explicit morphological adaptations to the ectoparasitic life in each stage. The parasite exhibits a complex digestive tract well equipped for hematophagous feeding. It consists of a mouth opening with prominent buccal suckers, eversible pharynx with adjacent glandular structures, and a blind-ending gut with cecal lining. Glandulo-muscular organs, located apically and opened into the mouth corner, are considered to be a part of the digestive tract. Based on our observations of pharynx eversion and in light of the presence of several glandular or gland-like structures, we propose a new hypothesis on the possibility of extracorporeal digestion of this parasite. The hindbody bears an attachment apparatus, comprising haptor, lobular extensions, and tegumental folds, responsible for the parasite's firm attachment to the host gills. The possibility of buccal suckers assisting in the parasite's translocation while searching for an optimal niche or their temporary attachment function during feeding is discussed. The body of each compound adult (i.e., permanent copula) is almost completely filled by two complete reproductive tracts comprising the female as well as male organs. Such a reproductive strategy, in which two independent heterogenic individuals fuse into a single hermaphrodite organism without the need to search for mating partner, represents a high specialization of diplozoids to their parasitic life.
- MeSH
- fyziologická adaptace * MeSH
- hermafroditické organismy fyziologie MeSH
- infestace ektoparazity parazitologie patofyziologie MeSH
- interakce hostitele a parazita fyziologie MeSH
- kapři parazitologie MeSH
- mikroskopie elektronová rastrovací MeSH
- parazitární onemocnění kůže parazitologie patofyziologie MeSH
- ploštěnci anatomie a histologie fyziologie ultrastruktura MeSH
- rozmnožování fyziologie MeSH
- stadia vývoje fyziologie MeSH
- stravovací zvyklosti MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH