Nejvíce citovaný článek - PubMed ID 17498726
High-performance liquid chromatography and nuclear magnetic resonance study of linear tetrapeptides and octapeptides containing N-methylated amino acid residues
Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.
- MeSH
- CD antigeny metabolismus MeSH
- inzulin analogy a deriváty chemie metabolismus MeSH
- kinetika MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- podjednotky proteinů MeSH
- receptor inzulinu metabolismus MeSH
- sekundární struktura proteinů MeSH
- statická elektřina MeSH
- techniky in vitro MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CD antigeny MeSH
- INSR protein, human MeSH Prohlížeč
- inzulin MeSH
- podjednotky proteinů MeSH
- receptor inzulinu MeSH