Most cited article - PubMed ID 18001270
Neuronal coding and spiking randomness
The apparent stochastic nature of neuronal activity significantly affects the reliability of neuronal coding. To quantify the encountered fluctuations, both in neural data and simulations, the notions of variability and randomness of inter-spike intervals have been proposed and studied. In this article we focus on the concept of the instantaneous firing rate, which is also based on the spike timing. We use several classical statistical models of neuronal activity and we study the corresponding probability distributions of the instantaneous firing rate. To characterize the firing rate variability and randomness under different spiking regimes, we use different indices of statistical dispersion. We find that the relationship between the variability of interspike intervals and the instantaneous firing rate is not straightforward in general. Counter-intuitively, an increase in the randomness (based on entropy) of spike times may either decrease or increase the randomness of instantaneous firing rate, in dependence on the neuronal firing model. Finally, we apply our methods to experimental data, establishing that instantaneous rate analysis can indeed provide additional information about the spiking activity.
- Keywords
- entropy, firing rate, instantaneous firing rate, neural coding, randomness, rate coding, temporal coding, variability,
- Publication type
- Journal Article MeSH
The Fano factor, defined as the variance-to-mean ratio of spike counts in a time window, is often used to measure the variability of neuronal spike trains. However, despite its transparent definition, careless use of the Fano factor can easily lead to distorted or even wrong results. One of the problems is the unclear dependence of the Fano factor on the spiking rate, which is often neglected or handled insufficiently. In this paper we aim to explore this problem in more detail and to study the possible solution, which is to evaluate the Fano factor in the operational time. We use equilibrium renewal and Markov renewal processes as spike train models to describe the method in detail, and we provide an illustration on experimental data.
- Keywords
- Fano factor, intensity, renewal process, spike trains, variability measure,
- Publication type
- Journal Article MeSH
During the stationary part of neuronal spiking response, the stimulus can be encoded in the firing rate, but also in the statistical structure of the interspike intervals. We propose and discuss two information-based measures of statistical dispersion of the interspike interval distribution, the entropy-based dispersion and Fisher information-based dispersion. The measures are compared with the frequently used concept of standard deviation. It is shown, that standard deviation is not well suited to quantify some aspects of dispersion that are often expected intuitively, such as the degree of randomness. The proposed dispersion measures are not entirely independent, although each describes the interspike intervals from a different point of view. The new methods are applied to common models of neuronal firing and to both simulated and experimental data.