Most cited article - PubMed ID 18855728
The development of new oximes and the evaluation of their reactivating, therapeutic and neuroprotective efficacy against tabun
BACKGROUND: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. METHODS: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. RESULTS: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. CONCLUSION: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.
- Keywords
- BI-6, KO-27, diethyl-paraoxon, oximes, plethysmography, pralidoxime, rats, ventilatory effects,
- MeSH
- Antidotes pharmacology MeSH
- Safety MeSH
- Cholinesterase Inhibitors toxicity MeSH
- Respiration drug effects MeSH
- Rats MeSH
- Organophosphate Poisoning drug therapy etiology MeSH
- Oximes pharmacology MeSH
- Paraoxon toxicity MeSH
- Rats, Sprague-Dawley MeSH
- Ventilation methods MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antidotes MeSH
- Cholinesterase Inhibitors MeSH
- Oximes MeSH
- Paraoxon MeSH
The blood-brain barrier plays a vital role in the protection of the central nervous system. It is composed of endothelial cells with tight-junctions to limit the penetration of many endogenous and exogenous compounds, particularly hydrophilic xenobiotics. Nerve agents and pesticides are groups of compounds with high penetration potential into the central nervous system. However, oxime type antidotes are known to penetrate blood-brain barrier only in low concentration. The aim of presented study is to describe the pharmacokinetic profile of oxime K027 a novel antidote candidate. The main focus is on penetration of tested substance into the selected brain regions following time-dependent manner. The maximum concentration of the oxime K027 was attaining 15 and 30 min after i.m. application in plasma and brain tissue, respectively. The perfused brain tissue concentration was relatively high (10(-7) M order of magnitude) and depending on the brain region it was constant 15-60 min after application. The highest concentration was found in the frontal cortex 15 min after application while the lowest measured concentration was determined in the basal ganglia. This study showed that oxime K027 is able to achieve high concentration level in perfused brain tissue relatively quickly, but also demonstrated rapid clearance from the central nervous system. These results are probably due to low overall uptake of oxime K027 into the brain.
- MeSH
- Time Factors MeSH
- Central Nervous System drug effects metabolism MeSH
- Blood-Brain Barrier drug effects metabolism MeSH
- Rats MeSH
- Brain drug effects metabolism MeSH
- Oximes metabolism pharmacokinetics MeSH
- Rats, Wistar MeSH
- Pyridinium Compounds metabolism pharmacokinetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 1-(4-hydroxyiminomethylpyridinium)-3-(carbamoylpyridinium) propane dibromide MeSH Browser
- Oximes MeSH
- Pyridinium Compounds MeSH
Seven new oxime-based acetylcholinesterase reactivators were compared with three currently available ones (obidoxime, trimedoxime, HI-6) for their ability to lessen cholinesterase inhibition in blood and brain of cyclosarin-treated rats. Oximes were given at doses of 5% their LD(50) along with 21 mg/kg atropine five min before the LD(50) of cyclosarin (120 ug/kg) was administered. Blood and brain samples were collected 30 minutes later. The greatest difference between acetylcholinesterase inhibition in blood of cyclosarin-treated rats was found after administration of HI-6 (40%), compared to 22% for trimedoxime and 6% for obidoxime. Only two of the seven newly synthesized oximes had any effect (K203 at 7%, K156 at 5%). Effective oximes against cyclosarin-inhibited plasma butyrylcholinesterase were HI-6 (42%), trimedoxime (11%), and K156 (4%). The oximes were less effective in brain than in blood, with reactivation values for HI-6 30% against acetylcholinesterase and 10% against butyrylcholinesterase. Values for newly synthesized oximes were less than 10% for K206, K269 and K203.
- Keywords
- acetylcholinesterase, butyrylcholinesterase, cyclosarin, oximes, reactivators,
- MeSH
- Acetylcholinesterase blood metabolism MeSH
- Atropine pharmacology MeSH
- Rats MeSH
- Brain drug effects enzymology MeSH
- Organophosphorus Compounds toxicity MeSH
- Oximes chemistry pharmacology MeSH
- Rats, Wistar MeSH
- Cholinesterase Reactivators chemistry pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Atropine MeSH
- cyclohexyl methylphosphonofluoridate MeSH Browser
- Organophosphorus Compounds MeSH
- Oximes MeSH
- Cholinesterase Reactivators MeSH