Nejvíce citovaný článek - PubMed ID 19072947
Base-modified DNA labeled by [Ru(bpy)(3)](2+) and [Os(bpy)(3)](2+) complexes: construction by polymerase incorporation of modified nucleoside triphosphates, electrochemical and luminescent properties, and applications
New redox labelling of DNA by an azido group which can be chemically transformed to nitrophenyltriazole or silenced to phenyltriazole was developed and applied to the electrochemical detection of DNA-protein interactions. 5-(4-Azidophenyl)-2'-deoxycytidine and 7-(4-azidophenyl)-7-deaza-2'-deoxyadenosine nucleosides were prepared by aqueous-phase Suzuki cross-coupling and converted to nucleoside triphosphates (dNTPs) which served as substrates for incorporation into DNA by DNA polymerase. The azidophenyl-modified nucleotides and azidophenyl-modified DNA gave a strong signal in voltammetric studies, at -0.9 V, due to reduction of the azido function. The Cu-catalyzed click reaction of azidophenyl-modified nucleosides or azidophenyl-modified DNA with 4-nitrophenylacetylene gave nitrophenyl-substituted triazoles, exerting a reduction peak at -0.4 V under voltammetry, whereas the click reaction with phenylacetylene gave electrochemically silent phenyltriazoles. The transformation of the azidophenyl label to nitrophenyltriazole was used for electrochemical detection of DNA-protein interactions (p53 protein) since only those azidophenyl groups in the parts of the DNA not shielded by the bound p53 protein were transformed to nitrophenyltriazoles, whereas those covered by the protein were not.
- Publikační typ
- časopisecké články MeSH
A set of 6 base-modified 2'-deoxyadenosine derivatives was incorporated to diverse DNA sequences by primer extension using Vent (exo-) polymerase and the influence of the modification on cleavage by diverse restriction endonucleases was studied. While 8-substituted (Br or methyl) adenine derivatives were well tolerated by the restriction enzymes and the corresponding sequences were cleaved, the presence of 7-substituted 7-deazaadenine in the recognition sequence resulted in blocking of cleavage by some enzymes depending on the nature and size of the 7-substituent. All sequences with modifications outside of the recognition sequence were perfectly cleaved by all the restriction enzymes. The results are useful both for protection of some sequences from cleavage and for manipulation of functionalized DNA by restriction cleavage.
- MeSH
- deoxyadeninnukleotidy chemie MeSH
- deoxyadenosiny chemie MeSH
- DNA-dependentní DNA-polymerasy metabolismus MeSH
- DNA chemie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- restrikční endonukleasy typu II metabolismus MeSH
- štěpení DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2'-deoxyadenosine MeSH Prohlížeč
- deoxyadeninnukleotidy MeSH
- deoxyadenosiny MeSH
- DNA-dependentní DNA-polymerasy MeSH
- DNA MeSH
- restrikční endonukleasy typu II MeSH
- Tli polymerase MeSH Prohlížeč