Nejvíce citovaný článek - PubMed ID 19778632
Modulation of antioxidant defence system in brain of rainbow trout (Oncorhynchus mykiss) after chronic carbamazepine treatment
This study investigated how the time interval between the last EMS (netting) and the acute confinement stress (AC stress) at the end of the experiment can influence growth, haematology, blood biochemistry, immunological response, antioxidant system, liver enzymes, and stress response of oscar (Astronotus ocellatus; 5.7 ± 0.8 g). Nine experimental treatments were tested, as follows: Control, Stress28 (EMS in weeks two and eight), Stress27 (EMS in weeks two and seven), Stress26 (EMS in weeks two and six), Stress25 (EMS in weeks two and five), Stress24 (EMS in week two and four), Stress23 (EMS in week two and three), Stress78 (EMS in week seven and eight), and Stress67 (EMS in week six and seven). After the nine-week experimental period, while it was not significant, fish exposed to Stress78 (26.78 g) and Stress67 (30.05 g) had the lowest growth rates. After AC stress, fish exposed to Stress78 (63.33%) and Control (60.00%) showed the lowest survival rate. The Stress78 fish displayed low resilience, illustrated by values of blood performance, LDL, total protein, lysozyme, ACH50, immunoglobin, complement component 4, complement component 3, cortisol, superoxide dismutase, catalase, and alanine aminotransferase. In conclusion, gathering consecutive stress and not enough recovery time in the Stress78 group negatively affected stress responsiveness and the health of oscar.
- Klíčová slova
- antioxidant response, blood biochemistry, blood performance, stress physiology, stress response,
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to investigate the effect of Tributyltin (TBT) on brain function and neurotoxicity of freshwater teleost. The effects of long-term exposure to TBT on antioxidant related indices (MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GR, glutathione reductase; GPx, glutathione peroxidase), Na+-K+-ATPase and neurological parameters (AChE, acetylcholinesterase; MAO, monoamine oxidase; NO, nitric oxide) in the brain of common carp were evaluated. Fish were exposed to sublethal concentrations of TBT (75 ng/L, 0.75 μg/L and 7.5 μg/L) for 15, 30, and 60 days. Based on the results, a low level and short-term TBT-induced stress could not induce the notable responses of the fish brain, but long-term exposure (more than 15 days) to TBT could lead to obvious physiological-biochemical responses (based on the measured parameters). The results also strongly indicated that neurotoxicity of TBT to fish. Thus, the measured physiological responses in fish brain could provide useful information to better understand the mechanisms of TBT-induced bio-toxicity.
- MeSH
- antioxidancia metabolismus MeSH
- chemické látky znečišťující vodu toxicita MeSH
- kapři MeSH
- mozek účinky léků MeSH
- oxidační stres MeSH
- trialkylcínové sloučeniny toxicita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- chemické látky znečišťující vodu MeSH
- trialkylcínové sloučeniny MeSH
- tributyltin MeSH Prohlížeč
We investigated the effect of long-term exposure to carbamazepine (CBZ) on the enzymatic alterations and RNA/DNA ratio in intestine tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 microg/l, 0.2 or 2.0 mg/l) for 42 days. Digestive enzymes (proteolytic enzymes and amylase) and energy metabolic enzyme (Na(+)-K(+)-ATPase) and antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], and glutathione reductase [GR]) in fish intestine were measured. In addition, intestinal RNA/DNA ratio was determined after 42 days exposure. Carbamazepine exposure at 2.0 mg/l led to significantly inhibited (P < 0.05) activity of Na(+)-K(+)-ATPase. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups gradually increased at lower concentration of CBZ (1.0 microg/l and 0.2 mg/l), then significantly inhibited (P < 0.05) at 2.0 mg/l. After 42 days, the RNA/DNA ratio in fish intestine was significantly lower (P < 0.05) in groups exposed to CBZ at 2.0 mg/l than in other groups. However, there was no statistical significance (P > 0.05) in the activities of digestive enzymes (proteolytic enzyme and amylase) and GR in all groups. In short, prolonged exposure to CBZ resulted in different responses of various enzymes and significantly lower RNA/DNA ratio in fish intestine. Furthermore, molecular and genetic mechanisms of these physiological responses in fish are not clear, which need to be further studied.
- MeSH
- antioxidancia metabolismus MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu aplikace a dávkování toxicita MeSH
- DNA účinky léků metabolismus MeSH
- karbamazepin aplikace a dávkování toxicita MeSH
- Oncorhynchus mykiss MeSH
- RNA účinky léků metabolismus MeSH
- sodíko-draslíková ATPasa antagonisté a inhibitory metabolismus MeSH
- střeva účinky léků enzymologie MeSH
- střevní sliznice metabolismus MeSH
- trávicí systém účinky léků enzymologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antioxidancia MeSH
- chemické látky znečišťující vodu MeSH
- DNA MeSH
- karbamazepin MeSH
- RNA MeSH
- sodíko-draslíková ATPasa MeSH