Most cited article - PubMed ID 19811394
Biophysical cancer transformation pathway
Continuous energy supply, a necessary condition for life, excites a state far from thermodynamic equilibrium, in particular coherent electric polar vibrations depending on water ordering in the cell. Disturbances in oxidative metabolism and coherence are a central issue in cancer development. Oxidative metabolism may be impaired by decreased pyruvate transfer to the mitochondrial matrix, either by parasitic consumption and/or mitochondrial dysfunction. This can in turn lead to disturbance in water molecules' ordering, diminished power, and coherence of the electromagnetic field. In tumors with the Warburg (reverse Warburg) effect, mitochondrial dysfunction affects cancer cells (fibroblasts associated with cancer cells), and the electromagnetic field generated by microtubules in cancer cells has low power (high power due to transport of energy-rich metabolites from fibroblasts), disturbed coherence, and a shifted frequency spectrum according to changed power. Therapeutic strategies restoring mitochondrial function may trigger apoptosis in treated cells; yet, before this step is performed, induction (inhibition) of pyruvate dehydrogenase kinases (phosphatases) may restore the cancer state. In tumor tissues with the reverse Warburg effect, Caveolin-1 levels should be restored and the transport of energy-rich metabolites interrupted to cancer cells. In both cancer phenotypes, achieving permanently reversed mitochondrial dysfunction with metabolic-modulating drugs may be an effective, specific anti-cancer strategy.
- Keywords
- LDH virus, cancer biophysics, disturbed coherence, microtubule oscillations, mitochondrial dysfunction, water ordering,
- Publication type
- Journal Article MeSH
- Review MeSH
Biological systems are hierarchically self-organized complex structures characterized by nonlinear interactions. Biochemical energy is transformed into work of physical forces required for various biological functions. We postulate that energy transduction depends on endogenous electrodynamic fields generated by microtubules. Microtubules and mitochondria colocalize in cells with microtubules providing tracks for mitochondrial movement. Besides energy transformation, mitochondria form a spatially distributed proton charge layer and a resultant strong static electric field, which causes water ordering in the surrounding cytosol. These effects create conditions for generation of coherent electrodynamic field. The metabolic energy transduction pathways are strongly affected in cancers. Mitochondrial dysfunction in cancer cells (Warburg effect) or in fibroblasts associated with cancer cells (reverse Warburg effect) results in decreased or increased power of the generated electromagnetic field, respectively, and shifted and rebuilt frequency spectra. Disturbed electrodynamic interaction forces between cancer and healthy cells may favor local invasion and metastasis. A therapeutic strategy of targeting dysfunctional mitochondria for restoration of their physiological functions makes it possible to switch on the natural apoptotic pathway blocked in cancer transformed cells. Experience with dichloroacetate in cancer treatment and reestablishment of the healthy state may help in the development of novel effective drugs aimed at the mitochondrial function.
- MeSH
- Models, Biological * MeSH
- Electromagnetic Fields * MeSH
- Humans MeSH
- Mitochondria radiation effects MeSH
- Cell Transformation, Neoplastic radiation effects MeSH
- Neoplasms physiopathology MeSH
- Energy Transfer * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This paper describes a proposed biophysical mechanism of a novel diagnostic method for cancer detection developed recently by Vedruccio. The diagnostic method is based on frequency selective absorption of electromagnetic waves by malignant tumors. Cancer is connected with mitochondrial malfunction (the Warburg effect) suggesting disrupted physical mechanisms. In addition to decreased energy conversion and nonutilized energy efflux, mitochondrial malfunction is accompanied by other negative effects in the cell. Diminished proton space charge layer and the static electric field around the outer membrane result in a lowered ordering level of cellular water and increased damping of microtubule-based cellular elastoelectrical vibration states. These changes manifest themselves in a dip in the amplitude of the signal with the fundamental frequency of the nonlinear microwave oscillator-the core of the diagnostic device-when coupled to the investigated cancerous tissue via the near-field. The dip is not present in the case of healthy tissue.
- MeSH
- Biophysics instrumentation methods MeSH
- Electricity MeSH
- Electromagnetic Fields * MeSH
- Humans MeSH
- Microtubules chemistry metabolism radiation effects MeSH
- Microwaves MeSH
- Neoplasms diagnosis metabolism pathology MeSH
- Elasticity MeSH
- Case-Control Studies MeSH
- Vibration MeSH
- Water chemistry metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water MeSH
Electromagnetic fields generated by living cells have been experimentally investigated in the past 3 decades; however, the results are often inconsistent. In this paper we discuss some technical aspects of such challenging experiments, a brief review of which is also included. Special attention is paid to the sensor with respect to the power available from a cell and the power needed to excite the macroscopic measurement devices. We drew the conclusion that the nanoelectronic approach should be used.