Nejvíce citovaný článek - PubMed ID 19848137
Greenhouse gas emissions from global cities
Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33-68% to their total carbon inflows. While 13-33% of the carbon appropriated by cities is immediately combusted and released as CO2, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
As national efforts to reduce CO2 emissions intensify, policy-makers need increasingly specific, subnational information about the sources of CO2 and the potential reductions and economic implications of different possible policies. This is particularly true in China, a large and economically diverse country that has rapidly industrialized and urbanized and that has pledged under the Paris Agreement that its emissions will peak by 2030. We present new, city-level estimates of CO2 emissions for 182 Chinese cities, decomposed into 17 different fossil fuels, 46 socioeconomic sectors, and 7 industrial processes. We find that more affluent cities have systematically lower emissions per unit of gross domestic product (GDP), supported by imports from less affluent, industrial cities located nearby. In turn, clusters of industrial cities are supported by nearby centers of coal or oil extraction. Whereas policies directly targeting manufacturing and electric power infrastructure would drastically undermine the GDP of industrial cities, consumption-based policies might allow emission reductions to be subsidized by those with greater ability to pay. In particular, sector-based analysis of each city suggests that technological improvements could be a practical and effective means of reducing emissions while maintaining growth and the current economic structure and energy system. We explore city-level emission reductions under three scenarios of technological progress to show that substantial reductions (up to 31%) are possible by updating a disproportionately small fraction of existing infrastructure.
- MeSH
- klimatické změny * MeSH
- monitorování životního prostředí * MeSH
- oxid uhličitý analýza MeSH
- podnebí * MeSH
- průmysl MeSH
- velkoměsta MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Čína MeSH
- velkoměsta MeSH
- Názvy látek
- oxid uhličitý MeSH
The UN Framework Convention on Climate Change aims to keep warming below 2 °C while recognizing developing countries' right to eradicate extreme poverty. Poverty eradication is also the first of the Sustainable Development Goals. This paper investigates potential consequences for climate targets of achieving poverty eradication. We find that eradicating extreme poverty, i.e., moving people to an income above $1.9 purchasing power parity (PPP) a day, does not jeopardize the climate target even in the absence of climate policies and with current technologies. On the other hand, bringing everybody to a still modest expenditure level of at least $2.97 PPP would have long-term consequences on achieving emission targets. Compared to the reference mitigation pathway, eradicating extreme poverty increases the effort by 2.8% whereas bringing everybody to at least $2.97 PPP would increase the required mitigation rate by 27%. Given that the top 10% global income earners are responsible for 36% of the current carbon footprint of households; the discourse should address income distribution and the carbon intensity of lifestyles.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH