Physical and virtual carbon metabolism of global cities
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31924775
PubMed Central
PMC6954253
DOI
10.1038/s41467-019-13757-3
PII: 10.1038/s41467-019-13757-3
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Urban activities have profound and lasting effects on the global carbon balance. Here we develop a consistent metabolic approach that combines two complementary carbon accounts, the physical carbon balance and the fossil fuel-derived gaseous carbon footprint, to track carbon coming into, being added to urban stocks, and eventually leaving the city. We find that over 88% of the physical carbon in 16 global cities is imported from outside their urban boundaries, and this outsourcing of carbon is notably amplified by virtual emissions from upstream activities that contribute 33-68% to their total carbon inflows. While 13-33% of the carbon appropriated by cities is immediately combusted and released as CO2, between 8 and 24% is stored in durable household goods or becomes part of other urban stocks. Inventorying carbon consumed and stored for urban metabolism should be given more credit for the role it can play in stabilizing future global climate.
Department of Environmental Studies Masaryk University Brno Czech Republic
Department of Geographical Sciences University of Maryland College Park MD 20742 USA
Department of Mathematics Quaid 1 Azam University Islamabad 44000 Pakistan
Institutes of Science and Development Chinese Academy of Sciences Beijing China
International Institute for Applied Systems Analysis Schlossplatz 1 A 2361 Laxenburg Austria
NAAM Research Group Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
Potsdam Institute for Climate Impact Research Potsdam 14473 Germany
Resnick Sustainability Institute California Institute of Technology Pasadena CA 91125 USA
School of Environmental Science and Engineering Sun Yat sen University Guangzhou 510275 China
See more in PubMed
United Nations. World Urbanization Prospects: The 2014 Revision (United Nations Department of Economics and Social Affairs, Population Division, 2015).
Seto KC, Güneralp B, Hutyra LR. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA. 2012;109:16083–16088. doi: 10.1073/pnas.1211658109. PubMed DOI PMC
Grimm NB, et al. Global change and the ecology of cities. Science. 2008;319:756–760. doi: 10.1126/science.1150195. PubMed DOI
Dhakal, S. & Ruth, M. Creating Low Carbon Cities. (Springer International Publishing, 2017).
Gurney KR, et al. Climate change: track urban emissions on a human scale. Nature. 2015;525:179–181. doi: 10.1038/525179a. PubMed DOI
Seto, K. C. et al. Human Settlements, Infrastructure and Spatial Planning. In: (eds Edenhofer, O. R. et al.) Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2014).
Dodman D. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 2009;21:185–201. doi: 10.1177/0956247809103016. DOI
Hoornweg D, Sugar L, Gomez CLT. Cities and greenhouse gas emissions: moving forward. Environ. Urban. 2011;21:185–201.
Ramaswami A, Russell AG, Culligan PJ, Sharma KR, Kumar E. Meta-principles for developing smart, sustainable, and healthy cities. Science. 2016;352:940–943. doi: 10.1126/science.aaf7160. PubMed DOI
Peters GP. Carbon footprints and embodied carbon at multiple scales. Curr. Opin. Env. Sust. 2010;2:245–250. doi: 10.1016/j.cosust.2010.05.004. DOI
WRI/WBCSD. The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard. (World Resources Institute and World Business Council for Sustainable Development, Washington, DC) http://www.ghgprotocol.org/sites/default/files/ghgp/standards/ghg-protocol-revised.pdf (2004).
ICLEI, WRI and C40. Global Protocol for Community-Scale GHG Emissions. http://www.iclei.org/activities/agendas/low-carbon-city/gpc.html (2014).
Ramaswami A, Chavez A, Ewing-Thiel J, Reeve KE. Two approaches to greenhouse gas emissions footprinting at the city scale. Environ. Sci. Technol. 2011;45:4205–4206. doi: 10.1021/es201166n. PubMed DOI
Ramaswami A, Hillman T, Janson B, Reiner M, Thomas G. A demand-centered, hybrid life-cycle methodology for city-scale greenhouse gas inventories. Environ. Sci. Technol. 2008;42:6455–6461. doi: 10.1021/es702992q. PubMed DOI
Chavez A, Ramaswami A. Articulating a trans-boundary infrastructure supply chain greenhouse gas emission footprint for cities: Mathematical relationships and policy relevance. Energy Policy. 2013;54:376–384. doi: 10.1016/j.enpol.2012.10.037. DOI
Minx J, et al. Carbon footprints of cities and other human settlements in the UK. Environ. Res. Lett. 2013;8:035–039. doi: 10.1088/1748-9326/8/3/035039. DOI
Mi Z, et al. Consumption-based emission accounting for Chinese cities. Appl. Energy. 2016;184:1073–1081. doi: 10.1016/j.apenergy.2016.06.094. DOI
C40 Cities Climate Leadership Group (C40). Consumption-based GHG emissions of C40 Cities. Available at: http://www.c40.org/researches/consumption-based-emissions (2018).
Lin J, Hu Y, Cui S, Kang J, Ramaswami A. Tracking urban carbon footprints from production and consumption perspectives. Environ. Res. Lett. 2015;10:054001. doi: 10.1088/1748-9326/10/5/054001. DOI
Chen S, et al. Dynamic carbon emission linkages across boundaries. Earth’s Future. 2019;7:197–209. doi: 10.1029/2018EF000811. DOI
Hillman T, Ramaswami A. Greenhouse gas emission footprints and energy use benchmarks for eight US cities. Environ. Sci. Technol. 2010;44:1902–1910. doi: 10.1021/es9024194. PubMed DOI
Kennedy C, et al. Greenhouse gas emissions from global cities. Environ. Sci. Technol. 2009;43:7297–7302. doi: 10.1021/es900213p. PubMed DOI
Kennedy C, et al. Methodology for inventorying greenhouse gas emissions from global cities. Energy Policy. 2010;38:4828–4837. doi: 10.1016/j.enpol.2009.08.050. DOI
Chen S, Chen B. Changing urban carbon metabolism over time: historical trajectory and future pathway. Environ. Sci. Technol. 2017;51:7560–7571. doi: 10.1021/acs.est.7b01694. PubMed DOI
Churkina G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008;216:107–113. doi: 10.1016/j.ecolmodel.2008.03.006. DOI
Churkina G, Brown DG, Keoleian G. Carbon stored in human settlements: the conterminous United States. Glob. Change Biol. 2010;16:135–143. doi: 10.1111/j.1365-2486.2009.02002.x. DOI
Pataki DE, et al. Urban ecosystems and the North American carbon cycle. Glob. Change Biol. 2006;12:2092–2102. doi: 10.1111/j.1365-2486.2006.01242.x. DOI
Nowak DJ. Atmospheric carbon-reduction by urban trees. J. Environ. Manag. 1993;37:207–217. doi: 10.1006/jema.1993.1017. DOI
Chen S, Chen B. Network environ perspective for urban metabolism and carbon emissions: a case study of Vienna, Austria. Environ. Sci. Technol. 2012;46:4498–4506. doi: 10.1021/es204662k. PubMed DOI
Singh S, Bakshi BR. Accounting for emissions and sinks from the biogeochemical cycle of carbon in the US economic input-output model. J. Ind. Ecol. 2014;18:818–828. doi: 10.1111/jiec.12156. DOI
Singh S, Bakshi BR. Footprints of carbon and nitrogen: Revisiting the paradigm and exploring their nexus for decision making. Ecol. Indic. 2015;53:49–60. doi: 10.1016/j.ecolind.2015.01.001. DOI
Kaza, S., Yao, L. C., Bhada-Tata, P. & Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development. (World Bank, Washington, DC). Available at: https://openknowledge.worldbank.org/handle/10986/30317 (2018).
Cherubini F, Bargigli S, Ulgiati S. Life cycle assessment (LCA) of waste management strategies: landfilling, sorting plant and incineration. Energy. 2009;34:2116–2123. doi: 10.1016/j.energy.2008.08.023. DOI
Mohareb E, Kennedy C. Gross direct and embodied carbon sinks for urban inventories. J. Ind. Ecol. 2012;16:302–316. doi: 10.1111/j.1530-9290.2011.00445.x. DOI
Weisz H, Steinberger JK. Reducing energy and material flows in cities. Curr. Opin. Env. Sust. 2010;2:185–192. doi: 10.1016/j.cosust.2010.05.010. DOI
Peters GP, Davis SJ, Andrew R. A synthesis of carbon in international trade. Biogeosciences. 2012;9:3247–3276. doi: 10.5194/bg-9-3247-2012. DOI
Wiedmann TO, et al. The material footprint of nations. Proc. Natl Acad. Sci. USA. 2015;112:6271–6276. doi: 10.1073/pnas.1220362110. PubMed DOI PMC
Atkinson G, Hamilton K, Ruta G, Dominique VDM. Trade in ‘virtual carbon’: empirical results and implications for policy. Glob. Environ. Chang. 2011;21:563–574. doi: 10.1016/j.gloenvcha.2010.11.009. DOI
López LA, Arce G, Zafrilla JE. Parcelling virtual carbon in the pollution haven hypothesis. Energy Econ. 2013;39:177–186. doi: 10.1016/j.eneco.2013.05.006. DOI
Bailis R, Drigo R, Ghilardi A, Masera O. The carbon footprint of traditional woodfuels. Nat. Clim. Change. 2015;5:266–272. doi: 10.1038/nclimate2491. DOI
Kennedy CA, et al. Energy and material flows of megacities. Proc. Natl Acad. Sci. USA. 2015;112:5985–5990. doi: 10.1073/pnas.1504315112. PubMed DOI PMC
Creutzig F, Baiocchi G, Bierkandt R, Pichler PP, Seto KC. Global typology of urban energy use and potentials for an urbanization mitigation wedge. Proc. Natl Acad. Sci. USA. 2015;112:6283–6288. doi: 10.1073/pnas.1315545112. PubMed DOI PMC
C40 Cities Climate Leadership Group. http://www.c40.org/cities.
ICLEI (Local Governments for Sustainability). The Ambitious City Promises Project. https://www.iclei.org/en/ACP.html (2017).
Kennedy CA, Ibrahim N, Hoornweg D. Low-carbon infrastructure strategies for cities. Nat. Clim. Change. 2014;4:343–346. doi: 10.1038/nclimate2160. DOI
York R. Asymmetric effects of economic growth and decline on CO2 emissions. Nat. Clim. Change. 2012;2:762–764. doi: 10.1038/nclimate1699. DOI
Davis SJ, Caldeira K, Matthews HD. Future CO2 emissions and climate change from existing energy infrastructure. Science. 2010;329:1330–1333. doi: 10.1126/science.1188566. PubMed DOI
Creutzig F, et al. Urban infrastructure choices structure climate solutions. Nat. Clim. Change. 2016;6:1054–1056. doi: 10.1038/nclimate3169. DOI
Lee U, Han J, Wang M. Evaluation of landfill gas emissions from municipal solid waste landfills for the life-cycle analysis of waste-to-energy pathways. J. Clean. Prod. 2017;166:335–342. doi: 10.1016/j.jclepro.2017.08.016. DOI
Zheng J, Suh S. Strategies to reduce the global carbon footprint of plastics. Nat. Clim. Change. 2019;9:374–378. doi: 10.1038/s41558-019-0459-z. DOI
IPCC, Revised 1996 Guidelines for National Greenhouse Gas Inventories: Workbook. Available at: http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (1997).
Goldstein B, Birkved M, Quitzau MB, Hauschild M. Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environ. Res. Lett. 2013;8:035024. doi: 10.1088/1748-9326/8/3/035024. DOI
Singh S, Bakshi BR. Accounting for the biogeochemical cycle of nitrogen in input-output life cycle assessment. Environ. Sci. Technol. 2013;47:9388–9396. doi: 10.1021/es4009757. PubMed DOI
Hao Y, Su M, Zhang L, Cai Y, Yang Z. Integrated accounting of urban carbon cycle in Guangyuan, a mountainous city of China: the impacts of earthquake and reconstruction. J. Clean. Prod. 2015;103:231–240. doi: 10.1016/j.jclepro.2014.05.091. DOI
Liang S, Zhang T. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input–output model: a case of Suzhou in China. Waste Manag. 2012;32:220–225. doi: 10.1016/j.wasman.2011.08.018. PubMed DOI
Eriksson O, Finnveden G, Ekvall T, Björklundb A. Life cycle assessment of fuels for district heating: a comparison of waste incineration, biomass-and natural gas combustion. Energ. Policy. 2007;35:1346–1362. doi: 10.1016/j.enpol.2006.04.005. DOI
Chen YC, Lo SL. Evaluation of greenhouse gas emissions for several municipal solid waste management strategies. J. Clean. Prod. 2016;113:606–612. doi: 10.1016/j.jclepro.2015.11.058. DOI
Springmann M, et al. Options for keeping the food system within environmental limits. Nature. 2018;562:519–525. doi: 10.1038/s41586-018-0594-0. PubMed DOI
Fischer-Kowalski M, et al. Methodology and indicators of economy-wide material flow accounting: state of the art and reliability across sources. J. Ind. Ecol. 2011;15:855–876. doi: 10.1111/j.1530-9290.2011.00366.x. DOI
Minnesota IMPLAN Group, Inc. Hudson, WI. http://implan.com/ (2019).
Miller, R. E. & Blair, P. D. Input-Output Analysis: Foundations And Extensions. 348 (Cambridge University Press, 2009).
Guan D, Hubacek K, Weber CL, Peters GP, Reiner DM. The drivers of Chinese CO2 emissions from 1980 to 2030. Glob. Environ. Chang. 2008;18:626–634. doi: 10.1016/j.gloenvcha.2008.08.001. DOI
Lenzen M, Wood R, Wiedmann T. Uncertainty analysis for multi-region input–output models–a case study of the UK’s carbon footprint. Econ. Syst. Res. 2010;22:43–63. doi: 10.1080/09535311003661226. DOI
Lenzen M. Errors in conventional and input-output—based life—cycle inventories. J. Ind. Ecol. 2000;4:127–148. doi: 10.1162/10881980052541981. DOI
Dhakal S. Urban energy use and carbon emissions from cities in China and policy implications. Energy Policy. 2009;37:4208–4219. doi: 10.1016/j.enpol.2009.05.020. DOI
Xi F, et al. Substantial global carbon uptake by cement carbonation. Nat. Geosci. 2016;9:880–883. doi: 10.1038/ngeo2840. DOI
Andersson R, Fridh K, Stripple H, Häglund M. Calculating CO2 uptake for existing concrete structures during and after service life. Environ. Sci. Technol. 2013;47:11625–11633. doi: 10.1021/es401775w. PubMed DOI
Dodoo A, Gustavsson L, Sathre R. Carbon implications of end-of-life management of building materials. Resour. Conserv. Recy. 2009;53:276–286. doi: 10.1016/j.resconrec.2008.12.007. DOI