Maximizing efficiency of dipolar recoupling in solid-state NMR using optimal control sequences
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34644121
PubMed Central
PMC8514097
DOI
10.1126/sciadv.abj5913
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Dipolar recoupling is a central concept in the nuclear magnetic resonance spectroscopy of powdered solids and is used to establish correlations between different nuclei by magnetization transfer. The efficiency of conventional cross-polarization methods is low because of the inherent radio frequency (rf) field inhomogeneity present in the magic angle spinning (MAS) experiments and the large chemical shift anisotropies at high magnetic fields. Very high transfer efficiencies can be obtained using optimal control–derived experiments. These sequences had to be optimized individually for a particular MAS frequency. We show that by adjusting the length and the rf field amplitude of the shaped pulse synchronously with sample rotation, optimal control sequences can be successfully applied over a range of MAS frequencies without the need of reoptimization. This feature greatly enhances their applicability on spectrometers operating at differing external fields where the MAS frequency needs to be adjusted to avoid detrimental resonance effects.
Bayerisches NMR Zentrum 85747 Garching Germany
Department of Chemistry Faculty of Science Charles University Albertov 6 12842 Prague Czech Republic
Munich Center for Quantum Science and Technology Schellingstr 4 D 80799 München Germany
Zobrazit více v PubMed
Reif B., Ashbrook S. E., Emsley L., Hong M., Solid-state NMR spectroscopy. Nat. Rev. Methods Prim. 1, 2 (2021). PubMed PMC
Wälti M. A., Ravotti F., Arai H., Glabe C. G., Wall J. S., Böckmann A., Güntert P., Meier B. H., Riek R., Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Proc. Natl. Acad. Sci. U.S.A. 113, E4976–E4984 (2016). PubMed PMC
Tuttle M. D., Comellas G., Nieuwkoop A. J., Covell D. J., Berthold D. A., Kloepper K. D., Courtney J. M., Kim J. K., Barclay A. M., Kendall A., Wan W., Stubbs G., Schwieters C. D., Lee V. M. Y., George J. M., Rienstra C. M., Solid-state NMR structure of a pathogenic fibril of full-length human α-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016). PubMed PMC
McDermott A. E., Structural and dynamic studies of proteins by solid-state NMR spectroscopy: Rapid movement forward. Curr. Opin. Struct. Biol. 14, 554–561 (2004). PubMed
Schaefer J., McKay R. A., Stejskal E. O., Double-cross-polarization NMR of solids. J. Magn. Reson. 34, 443–447 (1979).
Hartmann S. R., Hahn E. L., Nuclear double resonance in the rotating frame. Phys. Rev. 128, 2042–2053 (1962).
Stejskal E. O., Schaefer J., Waugh J. S., Magic-angle spinning and polarization transfer in proton-enhanced NMR. J. Magn. Reson. 28, 105–112 (1977).
Metz G., Wu X. L., Smith S. O., Ramped-amplitude cross polarization in magic-angle-spinning NMR. J. Magn. Reson. Ser. A. 110, 219–227 (1994).
Baldus M., Geurts D. G., Hediger S., Meier B. H., Efficient 15N–13C polarization transfer by adiabatic-passage Hartmann-Hahn cross polarization. J. Magn. Reson. Ser. A. 118, 140–144 (1996).
Peersen O. B., Wu X. L., Smith S. O., Enhancement of CP-MAS signals by variable-amplitude cross polarization. Compensation for inhomogeneous B1 fields. J. Magn. Reson. Ser. A. 106, 127–131 (1994).
Gupta R., Hou G., Polenova T., Vega A. J., RF inhomogeneity and how it controls CPMAS. Solid State Nucl. Magn. Reson. 72, 17–26 (2015). PubMed PMC
Tošner Z., Purea A., Struppe J. O., Wegner S., Engelke F., Glaser S. J., Reif B., Radiofrequency fields in MAS solid state NMR probes. J. Magn. Reson. 284, 20–32 (2017). PubMed
Oas T. G., Griffin R. G., Levitt M. H., Rotary resonance recoupling of dipolar interactions in solid-state nuclear magnetic resonance spectroscopy. J. Chem. Phys. 89, 692–695 (1988).
Levitt M. H., Oas T. G., Griffin R. G., Rotary resonance recoupling in heteronuclear spin pair systems. Isr. J. Chem. 28, 271–282 (1988).
Tošner Z., Sarkar R., Becker-Baldus J., Glaubitz C., Wegner S., Engelke F., Glaser S. J., Reif B., Overcoming volume selectivity of dipolar recoupling in biological solid-state NMR spectroscopy. Angew. Chemie - Int. Ed. 57, 14514–14518 (2018). PubMed
Aebischer K., Tošner Z., Ernst M., Effects of radial radio-frequency field inhomogeneity on MAS solid-state NMR experiments. Magn. Reson. 2, 523–543 (2021). PubMed PMC
Haeberlen U., Waugh J. S., Coherent averaging effects in magnetic resonance. Phys. Rev. 175, 453–467 (1968).
Schmidt A., Vega S., The Floquet theory of nuclear magnetic resonance spectroscopy of single spins and dipolar coupled spin pairs in rotating solids. J. Chem. Phys. 96, 2655–2680 (1992).
Khaneja N., Reiss T., Kehlet C., Schulte-Herbruggen T., Glaser S. J., Optimal control of coupled spin dynamics: Design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005). PubMed
N. C. Nielsen, C. Kehlet, S. J. Glaser, N. Khaneja, in eMagRes (John Wiley & Sons, 2007); 10.1002/9780470034590.emrstm1043. DOI
Glaser S. J., Boscain U., Calarco T., Koch C. P., Köckenberger W., Kosloff R., Kuprov I., Luy B., Schirmer S., Schulte-Herbrüggen T., Sugny D., Wilhelm F. K., Training Schrödinger’s cat: Quantum optimal control: Strategic report on current status, visions and goals for research in Europe. Eur. Phys. J. D. 69, 279 (2015).
de Fouquieres P., Schirmer S. G., Glaser S. J., Kuprov I., Second order gradient ascent pulse engineering. J. Magn. Reson. 212, 412–417 (2011). PubMed
Vosegaard T., Kehlet C., Khaneja N., Glaser S. J., Nielsen N. C., Improved excitation schemes for multiple-quantum magic-angle spinning for quadrupolar nuclei designed using optimal control theory. J. Am. Chem. Soc. 127, 13768–13769 (2005). PubMed
Loening N. M., van Rossum B.-J., Oschkinat H., Broadband excitation pulses for high-field solid-state nuclear magnetic resonance spectroscopy. Magn. Reson. Chem. 50, 284–288 (2012). PubMed PMC
Wei D., Akbey U., Paaske B., Oschkinat H., Reif B., Bjerring M., Nielsen N. C., Optimal 2H rf pulses and 2H–13C cross-polarization methods for solid-state 2H MAS NMR of perdeuterated proteins. J. Phys. Chem. Lett. 2, 1289–1294 (2011). PubMed
Kehlet C. T., Sivertsen A. C., Bjerring M., Reiss T. O., Khaneja N., Glaser S. J., Nielsen N. C., Improving solid-state NMR dipolar recoupling by optimal control. J. Am. Chem. Soc. 126, 10202–10203 (2004). PubMed
Kehlet C., Vosegaard T., Khaneja N., Glaser S. J., Nielsen N. C., Low-power homonuclear dipolar recoupling in solid-state NMR developed using optimal control theory. Chem. Phys. Lett. 414, 204–209 (2005).
Hansen J. O., Kehlet C., Bjerring M., Vosegaard T., Glaser S. J., Khaneja N., Nielsen N. C., Optimal control based design of composite dipolar recoupling experiments by analogy to single-spin inversion pulses. Chem. Phys. Lett. 447, 154–161 (2007).
Nielsen A. B., Bjerring M., Nielsen J. T., Nielsen N. C., Symmetry-based dipolar recoupling by optimal control: Band-selective experiments for assignment of solid-state NMR spectra of proteins. J. Chem. Phys. 131, 025101 (2009). PubMed
Bjerring M., Jain S., Paaske B., Vinther J. M., Nielsen N. C., Designing dipolar recoupling and decoupling experiments for biological solid-state NMR using interleaved continuous wave and rf pulse irradiation. Acc. Chem. Res. 46, 2098–2107 (2013). PubMed
Tošner Z., Glaser S. J., Khaneja N., Nielsen N. C., Effective Hamiltonians by optimal control: Solid-state NMR double-quantum planar and isotropic dipolar recoupling. J. Chem. Phys. 125, 184502 (2006). PubMed
Kehlet C., Bjerring M., Sivertsen A. C., Kristensen T., Enghild J. J., Glaser S. J., Khaneja N., Nielsen N. C., Optimal control based NCO and NCA experiments for spectral assignment in biological solid-state NMR spectroscopy. J. Magn. Reson. 188, 216–230 (2007). PubMed
Loening N. M., Bjerring M., Nielsen N. C., Oschkinat H., A comparison of NCO and NCA transfer methods for biological solid-state NMR spectroscopy. J. Magn. Reson. 214, 81–90 (2012). PubMed PMC
Brunner D. O., Pruessmann K. P., PubMed
Lapert M., Zhang Y., Janich M. A., Glaser S. J., Sugny D., Exploring the physical limits of saturation contrast in magnetic resonance imaging. Sci. Rep. 2, 589 (2012).
Raleigh D. P., Levitt M. H., Griffin R. G., Rotational resonance in solid state NMR. Chem. Phys. Lett. 146, 71–76 (1988).
Gullion T., Schaefer J., Rotational-echo double-resonance NMR. J. Magn. Reson. 81, 196–200 (1989). PubMed
Lee Y. K., Kurur N. D., Helmle M., Johannessen O. G., Nielsen N. C., Levitt M. H., Efficient dipolar recoupling in the NMR of rotating solids. A sevenfold symmetric radiofrequency pulse sequence. Chem. Phys. Lett. 242, 304–309 (1995).
M. H. Levitt, Symmetry-based pulse sequences in magic-angle spinning solid-state NMR, in eMagRes (2007); 10.1002/9780470034590.emrstm0551. DOI
Glaser S. J., Schulte-Herbruggen T., Sieveking M., Schedletzky O., Nielsen N. C., Sorensen O. W., Griesinger C., Unitary control in quantum ensembles: Maximizing signal intensity in coherent spectroscopy. Science 280, 421–424 (1998). PubMed
Tosner Z., Vosegaard T., Kehlet C., Khaneja N., Glaser S. J., Nielsen N. C., Optimal control in NMR spectroscopy: Numerical implementation in SIMPSON. J. Magn. Reson. 197, 120–134 (2009). PubMed
Dillmann B., Elbayed K., Zeiger H., Weingertner M. C., Piotto M., Engelke F., A novel low-E field coil to minimize heating of biological samples in solid-state multinuclear NMR experiments. J. Magn. Reson. 187, 10–18 (2007). PubMed
Pradhan T., Annamalai K., Sarkar R., Huhn S., Hegenbart U., Schönland S., Faendrich M., Reif B., Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability. J. Biol. Chem. 295, 18474–18484 (2020). PubMed PMC
Pradhan T., Annamalai K., Sarkar R., Hegenbart U., Schönland S., Faendrich M., Reif B., Solid state NMR assignments of a human λ-III immunoglobulin light chain amyloid fibril. Biomol. NMR Assign. 15, 9–16 (2021). PubMed PMC
Niu Z., Sarkar R., Aichler M., Wester H.-J., Yousefi B. H., Reif B., Mapping the binding interface of PET tracer molecules and Alzheimer disease Aβ fibrils by using MAS solid-state NMR spectroscopy. Chembiochem 21, 2495–2502 (2020). PubMed PMC
Bak M., Rasmussen J. T., Nielsen N. C., SIMPSON: A general simulation program for solid-state NMR spectroscopy. J. Magn. Reson. 147, 296–330 (2000). PubMed
Tošner Z., Andersen R., Stevenss B., Eden M., Nielsen N. C., Vosegaard T., Stevensson B., Eden M., Nielsen N. C., Vosegaard T., Computer-intensive simulation of solid-state NMR experiments using SIMPSON. J. Magn. Reson. 246, 79–93 (2014). PubMed
Bak M., Schultz R., Vosegaard T., Nielsen N. C., Specification and visualization of anisotropic interaction tensors in polypeptides and numerical simulations in biological solid-state NMR. J. Magn. Reson. 154, 28–45 (2002). PubMed
Cheng V. B., Suzukawa H. H. Jr., Wolfsberg M., Investigations of a nonrandom numerical method for multidimensional integration. J. Chem. Phys. 59, 3992–3999 (1973).
Equbal A., Bjerring M., Madhu P. K., Nielsen N. C., Improving spectral resolution in biological solid-state NMR using phase-alternated rCW heteronuclear decoupling. Chem. Phys. Lett. 635, 339–344 (2015).
M. Mehring, Principles of High Resolution NMR in Solids (Springer, 1983).
Levitt M. H., Edén M., Numerical simulation of periodic nuclear magnetic resonance problems: Fast calculation of carousel averages. Mol. Phys. 95, 879–890 (1998).
Hodgkinson P., Emsley L., Numerical simulation of solid-state NMR experiments. Prog. Nucl. Magn. Reson. Spectrosc. 36, 201–239 (2000).
D. L. Goodwin, “Advanced optimal control methods for spin systems,” thesis, University of Southampton (2017).
Engelke F., Electromagnetic wave compression and radio frequency homogeneity in NMR solenoidal coils: Computational approach. Concepts Magn. Reson. 15, 129–155 (2002).