Most cited article - PubMed ID 20345190
Late effect of early hypoxic disturbance in the rat heart: gender differences
Experimental and clinical studies have clearly demonstrated significant sex differences in myocardial structure and function, both under physiological and pathological conditions. The best example are significant sex differences in the cardiac tolerance to ischemia/reperfusion injury: pre-menopausal adult female hearts are more resistant as compared to the male myocardium. The importance of these findings is supported by the fact that the number of studies dealing with this issue increased significantly in recent years. Detailed molecular and cellular mechanisms responsible for sex differences are yet to be elucidated; however, it has been stressed that the differences cannot be explained only by the effect of estrogens. In recent years, a promising new hypothesis has been developed, suggesting that mitochondria may play a significant role in the sex differences in cardiac tolerance to oxygen deprivation. However, one is clear already today: sex differences are so important that they should be taken into consideration in the clinical practice for the selection of the optimal diagnostic and therapeutic strategy in the treatment of ischemic heart disease. The present review attempts to summarize the progress in cardiovascular research on sex-related differences in cardiac tolerance to oxygen deprivation during the last 40 years, i.e. from the first experimental observation. Particular attention was paid to the sex-related differences of the normal heart, sex-dependent tolerance to ischemia-reperfusion injury, the role of hormones and, finally, to the possible role of cardiac mitochondria in the mechanism of sex-dependent differences in cardiac tolerance to ischemia/reperfusion injury. Key words: Female heart, Cardiac hypoxic tolerance, Ischemia-reperfusion injury, Sex differences.
- MeSH
- Oxygen metabolism MeSH
- Humans MeSH
- Myocardium metabolism pathology MeSH
- Sex Characteristics * MeSH
- Myocardial Reperfusion Injury metabolism physiopathology MeSH
- Sex Factors MeSH
- Mitochondria, Heart metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Oxygen MeSH
In 2023, six decades have elapsed since the first experimental work on the heart muscle was published, in which a member of the Institute of Physiology of the Czech Academy of Sciences participated as an author; Professor Otakar Poupa was the founder and protagonist of this research domain. Sixty years - more than half of the century - is certainly significant enough anniversary that is worth looking back and reflecting on what was achieved during sometimes very complicated periods of life. It represents the history of an entire generation of experimental cardiologists; it is possible to learn from its successes and mistakes. The objective of this review is to succinctly illuminate the scientific trajectory of an experimental cardiological department over a 60-year span, from its inaugural publication to the present. The old truth - historia magistra vitae - is still valid. Keywords: Heart, Adaptation, Development, Hypoxia, Protection.
- MeSH
- Academies and Institutes * history MeSH
- Biomedical Research * history trends MeSH
- History, 20th Century MeSH
- History, 21st Century MeSH
- Physiology history MeSH
- Cardiology history trends MeSH
- Humans MeSH
- Heart physiology MeSH
- Animals MeSH
- Check Tag
- History, 20th Century MeSH
- History, 21st Century MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
- Review MeSH
- Geographicals
- Czech Republic MeSH