Nejvíce citovaný článek - PubMed ID 21144749
Preparation, in vitro screening and molecular modelling of symmetrical 4-tert-butylpyridinium cholinesterase inhibitors--analogues of SAD-128
The acetylcholinesterase (AChE) reactivators (e.g., obidoxime, asoxime) became an essential part of organophosphorus (OP) poisoning treatment, together with atropine and diazepam. They are referred to as a causal treatment of OP poisoning, because they are able to split the OP moiety from AChE active site and thus renew its function. In this approach, fifteen novel AChE reactivators were determined. Their molecular design originated from former K-oxime compounds K048 and K074 with remaining oxime part of the molecule and modified part with heteroarenium moiety. The novel compounds were prepared, evaluated in vitro on human AChE (HssAChE) inhibited by tabun, paraoxon, methylparaoxon or DFP and compared to commercial HssAChE reactivators (pralidoxime, methoxime, trimedoxime, obidoxime, asoxime) or previously prepared compounds (K048, K074, K075, K203). Some of presented oxime reactivators showed promising ability to reactivate HssAChE comparable or higher than the used standards. The molecular modelling study was performed with one compound that presented the ability to reactivate GA-inhibited HssAChE. The SAR features concerning the heteroarenium part of the reactivator's molecule are described.
- Klíčová slova
- acetylcholinesterase, in vitro, molecular docking, organophosphate, oxime, reactivation,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- cholinesterasové inhibitory toxicita MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- inhibiční koncentrace 50 MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie s uhlíkem 13C MeSH
- organofosforové sloučeniny toxicita MeSH
- protonová magnetická rezonanční spektroskopie MeSH
- reaktivátory cholinesterasy chemická syntéza chemie farmakologie MeSH
- rekombinantní proteiny metabolismus MeSH
- simulace molekulového dockingu * MeSH
- techniky in vitro MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- organofosforové sloučeniny MeSH
- reaktivátory cholinesterasy MeSH
- rekombinantní proteiny MeSH
BACKGROUND: Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. METHODS: The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. RESULTS: The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. CONCLUSION: The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity.
- Klíčová slova
- AChE inhibitors, nerve agents, pre-treatment, prophylaxis, soman, toxicity,
- MeSH
- acetylcholinesterasa metabolismus MeSH
- buněčné linie MeSH
- cholinesterasové inhibitory chemie farmakologie MeSH
- HeLa buňky MeSH
- knihovny malých molekul chemie farmakologie MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- nervová bojová látka škodlivé účinky MeSH
- soman škodlivé účinky MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholinesterasa MeSH
- cholinesterasové inhibitory MeSH
- knihovny malých molekul MeSH
- nervová bojová látka MeSH
- soman MeSH