Nejvíce citovaný článek - PubMed ID 21478763
Ice hockey requires two levels of specific agility, involving different abilities, where the level of agility and their constraints might vary by the performance level. Therefore, this study aimed to compare the relationship level between on-ice and off-ice change of directional speed (COD) of youth hockey players at two performance levels. The study was conducted during the hockey season, including U16 elite players (n = 40) and U16 sub-elite players (n = 23). Both groups performed specific on-ice fitness tests (4-m acceleration, 30-m sprint, and 6 x 54-m tests, an on-ice Illinois agility test with and without a puck) and off-ice tests consisting of non-arm swing countermovement jumps (CMJs), broad jumps, and pull-ups. Pearson correlation showed that the acceleration performance of elite players was related to the CMJ (r = -0.46) and the broad jump (r = -0.31). Sub-elite players showed stronger dependence of the 30-m sprint on the CMJ (r = -0.77) and the broad jump (r = -0.43), the relation of pulls ups (r = -0.62) and the CMJ (r = -0.50) to the 6 x 54-m test, yet no association to acceleration. Elite players differ between off-ice and on-ice performance constraints, where their skating sprint is less related to their vertical and horizontal take-off abilities than in sub-elite players. Sub-elite players' off-ice power determines their sprint and repeated sprint performance. COD performance of elite and sub-elite players is based on different conditioning constraints.
- Klíčová slova
- condition, exercise, motor control, skills, speed, testing,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: There is limited information regarding adaptation of HIIT in female athletes which is important since the adaptation to HIIT may be different compared to male athletes. Therefore, the aim of this systematic review was to summarize the effects of HIIT on physical performance in female team sports athletes. METHODS: The following databases Google Scholar, PubMed, Web of Science, Cochrane Library, ProQuest and Science Direct were searched prior to September 2nd, 2022. The inclusion criteria were longitudinal studies written in English, elite, sub-elite or college female team sports participants, and HIIT intensity had to be at 80-100% maximal heart rate. There were no exclusion criteria regarding the age of the participants or their training experience. The primary outcome measures were maximal oxygen uptake (VO2max), repeated sprint ability (RSA), change of direction speed, speed, explosive strength and body composition. RESULTS: A total of 13 studies met the inclusion criteria, with a total of 230 participants. HIIT improved VO2max in five studies (ES from 0.19 to 1.08), while three studies showed improvement in their RSA (ES from 0.32 to 0.64). In addition, change of direction speed was improved in five studies (ES from 0.34 to 0.88), while speed improved in four studies (ES from 0.12 to 0.88). Explosive strength results varied (ES from 0.39 to 1.05), while in terms of body composition, the results were inconsistent through observed team sports. CONCLUSION: HIIT has significant effects on VO2max, RSA, change of direction speed, speed and explosive strength in female team sports, regardless of the competition level.
- Klíčová slova
- Interval training, Output, Physical fitness, VO2max,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
The goals of this study were to evaluate the basic morphological variables of contemporary elite ice hockey players, compare the parameters of players in the top Russian ice hockey league (KHL) with those of the top Czech ice hockey league (ELH), and to evaluate the parameters of players according to their position in the game. The research participants included 30 KHL players (mean age: 27.1 ± 5.1 years) and 25 ELH players (mean age: 26.4 ± 5.8 years). We determined body height, body mass, and body composition (body fat, fat-free mass, segmental fat analysis). All measurements were performed at the end of preseason training. The KHL players had the following anthropometric characteristics: body height 182.97 ± 5.61 cm (forward) and 185.72 ± 3.57 cm (defenseman), body mass 89.70 ± 5.28 kg (forward) and 92.52 ± 4.01 kg (defenseman), body fat 10.76 ± 0.63 kg (forward) and 11.10 ± 0.48 kg (defenseman), fat-free mass 78.94 ± 4.65 kg (forward) and 81.42 ± 3.52 kg (defenseman). The values for ELH players were as follows: body height 182.06 ± 5.93 cm (forward) and 185.88 ± 7.13 cm (defenseman), body mass 88.47 ± 7.06 kg (forward) and 89.36 ± 10.91 kg (defenseman), body fat 12.57 ± 2.89 kg (forward) and 11.91 ± 3.10 kg (defenseman), fat-free mass 75.93 ± 6.54 kg (forward) and 77.46 ± 7.89 kg (defenseman). The results indicate that it is beneficial to ice hockey players to have increased body mass and lower body fat, which leads to higher muscle mass, thus enabling a player to perform at the highest level and meet the specific challenges of the game.
- Klíčová slova
- body composition, ice hockey, morphological variables, segmental analysis,
- Publikační typ
- časopisecké články MeSH