Most cited article - PubMed ID 21520034
Body mass index and body size in early adulthood and risk of pancreatic cancer in a central European multicenter case-control study
BACKGROUND: The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring. METHODS: We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution. FINDINGS: Higher KRAS amplicon size (167 bp and 218 bp) was associated with lower detectable cell-free DNA mutant allelic fractions (p < 0·0001), with up to 4·6-fold (95% CI: 2·6-8·1) difference on average when comparing the 218bp- and the 57bp-amplicons. The proportion of cases with detectable KRAS mutations was also hampered with increased amplicon lengths, with only half of the cases having detectable ctDNA using the 218 bp assay relative to those detected with amplicons less than 80 bp. INTERPRETATION: Tumour-derived mutations are carried by shorter cell-free DNA fragments than fragments of wild-type allele. Targeting short amplicons increases the sensitivity of cell-free DNA assays for pancreatic cancer and should be taken into account for optimized assay design and for evaluating their clinical performance. FUNDING: IARC; MH CZ - DRO; MH SK; exchange program between IARC and Sao Paulo medical Sciences; French Cancer League.
- Keywords
- Cell-free DNA, KRAS mutations, Pancreatic cancer detection, Plasma,
- MeSH
- Alleles MeSH
- Pancreatitis, Chronic blood diagnosis genetics pathology MeSH
- Circulating Tumor DNA blood genetics MeSH
- Gene Expression MeSH
- Gene Frequency MeSH
- Codon MeSH
- Humans MeSH
- Mutation MeSH
- Biomarkers, Tumor blood genetics MeSH
- Pancreatic Neoplasms blood diagnosis genetics pathology MeSH
- Proto-Oncogene Proteins p21(ras) blood genetics MeSH
- Base Sequence MeSH
- Sensitivity and Specificity MeSH
- Case-Control Studies MeSH
- Computational Biology MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Names of Substances
- Circulating Tumor DNA MeSH
- Codon MeSH
- KRAS protein, human MeSH Browser
- Biomarkers, Tumor MeSH
- Proto-Oncogene Proteins p21(ras) MeSH
The utility of KRAS mutations in plasma circulating cell-free DNA (cfDNA) samples as non-invasive biomarkers for the detection of pancreatic cancer has never been evaluated in a large case-control series. We applied a KRAS amplicon-based deep sequencing strategy combined with analytical pipeline specifically designed for the detection of low-abundance mutations to screen plasma samples of 437 pancreatic cancer cases, 141 chronic pancreatitis subjects, and 394 healthy controls. We detected mutations in 21.1% (N=92) of cases, of whom 82 (89.1%) carried at least one mutation at hotspot codons 12, 13 or 61, with mutant allelic fractions from 0.08% to 79%. Advanced stages were associated with an increased proportion of detection, with KRAS cfDNA mutations detected in 10.3%, 17,5% and 33.3% of cases with local, regional and systemic stages, respectively. We also detected KRAS cfDNA mutations in 3.7% (N=14) of healthy controls and in 4.3% (N=6) of subjects with chronic pancreatitis, but at significantly lower allelic fractions than in cases. Combining cfDNA KRAS mutations and CA19-9 plasma levels on a limited set of case-control samples did not improve the overall performance of the biomarkers as compared to CA19-9 alone. Whether the limited sensitivity and specificity observed in our series of KRAS mutations in plasma cfDNA as biomarkers for pancreatic cancer detection are attributable to methodological limitations or to the biology of cfDNA should be further assessed in large case-control series.
- Keywords
- KRAS mutations, cell-free DNA, pancreatic cancer detection, plasma,
- MeSH
- CA-19-9 Antigen blood MeSH
- Circulating Tumor DNA blood genetics MeSH
- Carcinoma, Pancreatic Ductal blood genetics pathology MeSH
- Phenotype MeSH
- Gene Frequency MeSH
- Genetic Predisposition to Disease MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation * MeSH
- DNA Mutational Analysis MeSH
- Biomarkers, Tumor blood genetics MeSH
- Pancreatic Neoplasms blood genetics pathology MeSH
- Pilot Projects MeSH
- Predictive Value of Tests MeSH
- Proto-Oncogene Proteins p21(ras) blood genetics MeSH
- Reproducibility of Results MeSH
- Aged MeSH
- Neoplasm Staging MeSH
- Case-Control Studies MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Validation Study MeSH
- Geographicals
- Czech Republic MeSH
- Slovakia MeSH
- Names of Substances
- CA-19-9 Antigen MeSH
- Circulating Tumor DNA MeSH
- KRAS protein, human MeSH Browser
- Biomarkers, Tumor MeSH
- Proto-Oncogene Proteins p21(ras) MeSH
OBJECTIVES: We aimed to evaluate the relation between menstrual and reproductive factors, exogenous hormones, and risk of pancreatic cancer (PC). METHODS: Eleven case-control studies within the International Pancreatic Cancer Case-control Consortium took part in the present study, including in total 2838 case and 4748 control women. Pooled estimates of odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated using a 2-step logistic regression model and adjusting for relevant covariates. RESULTS: An inverse OR was observed in women who reported having had hysterectomy (ORyesvs.no, 0.78; 95% CI, 0.67-0.91), remaining significant in postmenopausal women and never-smoking women, adjusted for potential PC confounders. A mutually adjusted model with the joint effect for hormone replacement therapy (HRT) and hysterectomy showed significant inverse associations with PC in women who reported having had hysterectomy with HRT use (OR, 0.64; 95% CI, 0.48-0.84). CONCLUSIONS: Our large pooled analysis suggests that women who have had a hysterectomy may have reduced risk of PC. However, we cannot rule out that the reduced risk could be due to factors or indications for having had a hysterectomy. Further investigation of risk according to HRT use and reason for hysterectomy may be necessary.
- MeSH
- Humans MeSH
- Logistic Models MeSH
- Pancreatic Neoplasms * MeSH
- Odds Ratio MeSH
- Risk Factors MeSH
- Case-Control Studies MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Pancreatic cancer is the fourth leading cause of cancer death in the developed world. Both inherited high-penetrance mutations in BRCA2 (ref. 2), ATM, PALB2 (ref. 4), BRCA1 (ref. 5), STK11 (ref. 6), CDKN2A and mismatch-repair genes and low-penetrance loci are associated with increased risk. To identify new risk loci, we performed a genome-wide association study on 9,925 pancreatic cancer cases and 11,569 controls, including 4,164 newly genotyped cases and 3,792 controls in 9 studies from North America, Central Europe and Australia. We identified three newly associated regions: 17q25.1 (LINC00673, rs11655237, odds ratio (OR) = 1.26, 95% confidence interval (CI) = 1.19-1.34, P = 1.42 × 10(-14)), 7p13 (SUGCT, rs17688601, OR = 0.88, 95% CI = 0.84-0.92, P = 1.41 × 10(-8)) and 3q29 (TP63, rs9854771, OR = 0.89, 95% CI = 0.85-0.93, P = 2.35 × 10(-8)). We detected significant association at 2p13.3 (ETAA1, rs1486134, OR = 1.14, 95% CI = 1.09-1.19, P = 3.36 × 10(-9)), a region with previous suggestive evidence in Han Chinese. We replicated previously reported associations at 9q34.2 (ABO), 13q22.1 (KLF5), 5p15.33 (TERT and CLPTM1), 13q12.2 (PDX1), 1q32.1 (NR5A2), 7q32.3 (LINC-PINT), 16q23.1 (BCAR1) and 22q12.1 (ZNRF3). Our study identifies new loci associated with pancreatic cancer risk.
- MeSH
- Genome-Wide Association Study methods MeSH
- Gene Frequency MeSH
- Genetic Predisposition to Disease genetics MeSH
- Genetic Loci genetics MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide * MeSH
- Middle Aged MeSH
- Humans MeSH
- Chromosomes, Human, Pair 17 genetics MeSH
- Chromosomes, Human, Pair 2 genetics MeSH
- Chromosomes, Human, Pair 3 genetics MeSH
- Chromosomes, Human, Pair 7 genetics MeSH
- Pancreatic Neoplasms genetics MeSH
- Risk Factors MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geographicals
- Australia MeSH
- Europe MeSH
- North America MeSH
BACKGROUND: Type 2 diabetes mellitus has been associated with an excess risk of pancreatic cancer, but the magnitude of the risk and the time-risk relationship are unclear, and there is limited information on the role of antidiabetic medications. PATIENTS AND METHODS: We analyzed individual-level data from 15 case-control studies within the Pancreatic Cancer Case-Control Consortium, including 8305 cases and 13 987 controls. Pooled odds ratios (ORs) were estimated from multiple logistic regression models, adjusted for relevant covariates. RESULTS: Overall, 1155 (15%) cases and 1087 (8%) controls reported a diagnosis of diabetes 2 or more years before cancer diagnosis (or interview, for controls), corresponding to an OR of 1.90 (95% confidence interval, CI, 1.72-2.09). Consistent risk estimates were observed across strata of selected covariates, including body mass index and tobacco smoking. Pancreatic cancer risk decreased with duration of diabetes, but a significant excess risk was still evident 20 or more years after diabetes diagnosis (OR 1.30, 95% CI 1.03-1.63). Among diabetics, long duration of oral antidiabetic use was associated with a decreased pancreatic cancer risk (OR 0.31, 95% CI 0.14-0.69, for ≥15 years). Conversely, insulin use was associated with a pancreatic cancer risk in the short term (OR 5.60, 95% CI 3.75-8.35, for <5 years), but not for longer duration of use (OR 0.95, 95% CI 0.53-1.70, for ≥15 years). CONCLUSION: This study provides the most definitive quantification to date of an excess risk of pancreatic cancer among diabetics. It also shows that a 30% excess risk persists for more than two decades after diabetes diagnosis, thus supporting a causal role of diabetes in pancreatic cancer. Oral antidiabetics may decrease the risk of pancreatic cancer, whereas insulin showed an inconsistent duration-risk relationship.
- Keywords
- case–control study, diabetes, insulin, oral antidiabetics, pancreatic cancer, pooled analysis,
- MeSH
- Diabetes Mellitus, Type 2 complications drug therapy epidemiology pathology MeSH
- Adult MeSH
- Hypoglycemic Agents therapeutic use MeSH
- Insulin MeSH
- Smoking MeSH
- Middle Aged MeSH
- Humans MeSH
- Logistic Models MeSH
- Pancreatic Neoplasms drug therapy epidemiology etiology pathology MeSH
- Risk Factors MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Hypoglycemic Agents MeSH
- Insulin MeSH