Circulating tumour-derived KRAS mutations in pancreatic cancer cases are predominantly carried by very short fragments of cell-free DNA
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie
Grantová podpora
001
World Health Organization - International
PubMed
32249202
PubMed Central
PMC7251242
DOI
10.1016/j.ebiom.2019.09.042
PII: S2352-3964(19)30646-2
Knihovny.cz E-zdroje
- Klíčová slova
- Cell-free DNA, KRAS mutations, Pancreatic cancer detection, Plasma,
- MeSH
- alely MeSH
- chronická pankreatitida krev diagnóza genetika patologie MeSH
- cirkulující nádorová DNA krev genetika MeSH
- exprese genu MeSH
- frekvence genu MeSH
- kodon MeSH
- lidé MeSH
- mutace MeSH
- nádorové biomarkery krev genetika MeSH
- nádory slinivky břišní krev diagnóza genetika patologie MeSH
- protoonkogenní proteiny p21(ras) krev genetika MeSH
- sekvence nukleotidů MeSH
- senzitivita a specificita MeSH
- studie případů a kontrol MeSH
- výpočetní biologie MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Názvy látek
- cirkulující nádorová DNA MeSH
- kodon MeSH
- KRAS protein, human MeSH Prohlížeč
- nádorové biomarkery MeSH
- protoonkogenní proteiny p21(ras) MeSH
BACKGROUND: The DNA released into the bloodstream by malignant tumours· called circulating tumour DNA (ctDNA), is often a small fraction of total cell-free DNA shed predominantly by hematopoietic cells and is therefore challenging to detect. Understanding the biological properties of ctDNA is key to the investigation of its clinical relevance as a non-invasive marker for cancer detection and monitoring. METHODS: We selected 40 plasma DNA samples of pancreatic cancer cases previously reported to carry a KRAS mutation at the 'hotspot' codon 12 and re-screened the cell-free DNA using a 4-size amplicons strategy (57 bp, 79 bp, 167 bp and 218 bp) combined with ultra-deep sequencing in order to investigate whether amplicon lengths could impact on the capacity of detection of ctDNA, which in turn could provide inference of ctDNA and non-malignant cell-free DNA size distribution. FINDINGS: Higher KRAS amplicon size (167 bp and 218 bp) was associated with lower detectable cell-free DNA mutant allelic fractions (p < 0·0001), with up to 4·6-fold (95% CI: 2·6-8·1) difference on average when comparing the 218bp- and the 57bp-amplicons. The proportion of cases with detectable KRAS mutations was also hampered with increased amplicon lengths, with only half of the cases having detectable ctDNA using the 218 bp assay relative to those detected with amplicons less than 80 bp. INTERPRETATION: Tumour-derived mutations are carried by shorter cell-free DNA fragments than fragments of wild-type allele. Targeting short amplicons increases the sensitivity of cell-free DNA assays for pancreatic cancer and should be taken into account for optimized assay design and for evaluating their clinical performance. FUNDING: IARC; MH CZ - DRO; MH SK; exchange program between IARC and Sao Paulo medical Sciences; French Cancer League.
Faculty of Health Sciences Palacky University Olomouc Czechia
Masaryk Memorial Cancer Institute and Medical Faculty of Masaryk University Brno Czechia
Zobrazit více v PubMed
Crowley E., Di Nicolantonio F., Loupakis F., Bardelli A. Liquid biopsy: monitoring cancer-genetics in the blood. Nat Rev Clin Oncol. 2013;10:472–484. PubMed
Schwarzenbach H., Hoon D.S., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer. 2011;11:426–437. PubMed
Snyder M.W., Kircher M., Hill A.J., Daza R.M., Shendure J. Cell-free DNA comprises an in vivo nucleosome footprint that informs its tissues-of-origin. Cell. 2016;164:57–68. PubMed PMC
Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–1665. PubMed
Bronkhorst A.J., Wentzel J.F., Aucamp J., van Dyk E., du Plessis L., Pretorius P.J. Characterization of the cell-free DNA released by cultured cancer cells. Biochim. Biophys. Acta. 2016;1863:157–165. PubMed
Thierry A.R., El Messaoudi S., Gahan P.B., Anker P., Stroun M. Origins, structures, and functions of circulating DNA in oncology. Cancer Metastasis Rev. 2016;35:347–376. PubMed PMC
Diehl F., Li M., Dressman D., He Y., Shen D., Szabo S. Proceedings of the National Academy of Sciences of the United States of America. Vol. 102. 2005. Detection and quantification of mutations in the plasma of patients with colorectal tumors; pp. 16368–16373. PubMed PMC
Mouliere F., El Messaoudi S., Gongora C., Guedj A.S., Robert B., Del Rio M. Circulating cell-free DNA from colorectal cancer patients may reveal high KRAS or BRAF mutation load. Transl Oncol. 2013;6:319–328. PubMed PMC
Jiang P., Chan C.W., Chan K.C., Cheng S.H., Wong J., Wong V.W. Proceedings of the National Academy of Sciences of the United States of America. Vol. 112. 2015. Lengthening and shortening of plasma DNA in hepatocellular carcinoma patients; pp. E1317–E1325. PubMed PMC
Underhill H.R., Kitzman J.O., Hellwig S., Welker N.C., Daza R., Baker D.N. Fragment length of circulating tumor DNA. PLoS Genet. 2016;12 PubMed PMC
Giacona M.B., Ruben G.C., Iczkowski K.A., Roos T.B., Porter D.M., Sorenson G.D. Cell-free DNA in human blood plasma: length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 1998;17:89–97. PubMed
Liu X., Liu L., Ji Y., Li C., Wei T., Yang X. Enrichment of short mutant cell-free DNA fragments enhanced detection of pancreatic cancer. EBioMedicine. 2019;41:345–356. PubMed PMC
Le Calvez-Kelm F., Foll M., Wozniak M.B., Delhomme T.M., Durand G., Chopard P. KRAS mutations in blood circulating cell-free DNA: a pancreatic cancer case-control. Oncotarget. 2016;7:78827–78840. PubMed PMC
Brenner D.R., Wozniak M.B., Feyt C., Holcatova I., Janout V., Foretova L. Physical activity and risk of pancreatic cancer in a central European multicenter case-control study. Cancer causes & control: CCC. 2014;25:669–681. PubMed
Urayama K.Y., Holcatova I., Janout V., Foretova L., Fabianova E., Adamcakova Z. Body mass index and body size in early adulthood and risk of pancreatic cancer in a central European multicenter case-control study. Int J Cancer. 2011;129:2875–2884. PubMed PMC
Fernandez-Cuesta L., Perdomo S., Avogbe P.H., Leblay N., Delhomme T.M., Gaborieau V. Identification of circulating tumor dna for the early detection of small-cell lung cancer. EBioMedicine. 2016;10:117–123. PubMed PMC
Github IARCbioinfo/Needlestack: Multi-sample somatic variant caller.
Mouliere F., Robert B., Arnau Peyrotte E., Del Rio M., Ychou M., Molina F. High fragmentation characterizes tumour-derived circulating DNA. PLoS One. 2011;6:e23418. PubMed PMC
Lo Y.M., Chan K.C., Sun H., Chen E.Z., Jiang P., Lun F.M. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2:61ra91. PubMed
Yu S.C., Lee S.W., Jiang P., Leung T.Y., Chan K.C., Chiu R.W. High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin. Chem. 2013;59:1228–1237. PubMed
Zheng Y.W., Chan K.C., Sun H., Jiang P., Su X., Chen E.Z. Nonhematopoietically derived DNA is shorter than hematopoietically derived DNA in plasma: a transplantation model. Clin. Chem. 2012;58:549–558. PubMed
Chan R.W., Jiang P., Peng X., Tam L.S., Liao G.J., Li E.K. Proceedings of the National Academy of Sciences of the United States of America. Vol. 111. 2014. Plasma DNA aberrations in systemic lupus erythematosus revealed by genomic and methylomic sequencing; pp. E5302–E5311. PubMed PMC
Kahlert C., Fiala M., Musso G., Halama N., Keim S., Mazzone M. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer. Oncotarget. 2014;5:12978–12989. PubMed PMC
Andersen R.F., Spindler K.L., Brandslund I., Jakobsen A., Pallisgaard N. Improved sensitivity of circulating tumor DNA measurement using short PCR amplicons. Clin. Chim. Acta. 2015;439:97–101. PubMed
Mouliere F., Chandrananda D., Piskorz A.M., Moore E.K., Morris J., Ahlborn L.B. Enhanced detection of circulating tumor DNA by fragment size analysis. Sci Transl Med. 2018;10 PubMed PMC
Hellwig S., Nix D.A., Gligorich K.M., O'Shea J.M., Thomas A., Fuertes C.L. Automated size selection for short cell-free DNA fragments enriches for circulating tumor DNA and improves error correction during next generation sequencing. PLoS One. 2018;13 PubMed PMC
Hu P., Liang D., Chen Y., Lin Y., Qiao F., Li H. An enrichment method to increase cell-free fetal DNA fraction and significantly reduce false negatives and test failures for non-invasive prenatal screening: a feasibility study. J Transl Med. 2019;17:124. PubMed PMC
Emaus M.N., Clark K.D., Hinners P., Anderson J.L. Preconcentration of DNA using magnetic ionic liquids that are compatible with real-time PCR for rapid nucleic acid quantification. Anal Bioanal Chem. 2018;410:4135–4144. PubMed