Nejvíce citovaný článek - PubMed ID 21788679
On parameter synthesis by parallel model checking
In our previous work, we designed and implemented a synthetic metabolic pathway for 1,2,3-trichloropropane (TCP) biodegradation in Escherichia coli. Significant effects of metabolic burden and toxicity exacerbation were observed on single cell and population levels. Deeper understanding of mechanisms underlying these effects is extremely important for metabolic engineering of efficient microbial cell factories for biotechnological processes. In this paper, we present a novel mathematical model of the pathway. The model addresses for the first time the combined effects of toxicity exacerbation and metabolic burden in the context of bacterial population growth. The model is calibrated with respect to the real data obtained with our original synthetically modified E. coli strain. Using the model, we explore the dynamics of the population growth along with the outcome of the TCP biodegradation pathway considering the toxicity exacerbation and metabolic burden. On the methodological side, we introduce a unique computational workflow utilising algorithmic methods of computer science for the particular modelling problem.
- Klíčová slova
- biodegradation, computational modelling, environmental pollutants, metabolic burden, population growth,
- Publikační typ
- časopisecké články MeSH
We propose a new framework for rigorous robustness analysis of stochastic biochemical systems that is based on probabilistic model checking techniques. We adapt the general definition of robustness introduced by Kitano to the class of stochastic systems modelled as continuous time Markov Chains in order to extensively analyse and compare robustness of biological models with uncertain parameters. The framework utilises novel computational methods that enable to effectively evaluate the robustness of models with respect to quantitative temporal properties and parameters such as reaction rate constants and initial conditions. We have applied the framework to gene regulation as an example of a central biological mechanism where intrinsic and extrinsic stochasticity plays crucial role due to low numbers of DNA and RNA molecules. Using our methods we have obtained a comprehensive and precise analysis of stochastic dynamics under parameter uncertainty. Furthermore, we apply our framework to compare several variants of two-component signalling networks from the perspective of robustness with respect to intrinsic noise caused by low populations of signalling components. We have successfully extended previous studies performed on deterministic models (ODE) and showed that stochasticity may significantly affect obtained predictions. Our case studies demonstrate that the framework can provide deeper insight into the role of key parameters in maintaining the system functionality and thus it significantly contributes to formal methods in computational systems biology.