Most cited article - PubMed ID 22093818
A higher response of plasma neuropeptide Y, growth hormone, leptin levels and extracellular glycerol levels in subcutaneous abdominal adipose tissue to Acipimox during exercise in patients with bulimia nervosa: single-blind, randomized, microdialysis study
The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-control binge eating, which is compensated by self-induced vomiting, fasting, or excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were recently described to trigger the production of autoantibodies cross-reacting with appetite-regulating hormones and neurotransmitters. Gut microbiome may be a potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite, emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic, and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems in eating disorders. We expect that the new knowledge may be used for the development of a novel preventive and therapeutic approach for treatment of AN and BN.
- Keywords
- alpha-MSH, anorexia nervosa and bulimia, autoantibody, caseinolytic peptidase B, fecal microbial transplantation, ghrelin, gut and blood-brain barrier permeability, microbiome,
- MeSH
- Autoantibodies * MeSH
- Ghrelin immunology MeSH
- Insulin immunology MeSH
- Leptin immunology MeSH
- Humans MeSH
- Melanocyte-Stimulating Hormones immunology MeSH
- Neuropeptide Y immunology MeSH
- Feeding and Eating Disorders immunology microbiology MeSH
- Gastrointestinal Microbiome immunology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Autoantibodies * MeSH
- Ghrelin MeSH
- Insulin MeSH
- Leptin MeSH
- Melanocyte-Stimulating Hormones MeSH
- Neuropeptide Y MeSH
Objective: Anti-lipolytic drugs and exercise are enhancers of growth hormone (GH) secretion. Decreased circulating free fatty acids (FFA) have been proposed to exert ghrelin-GH feedback loop after administration of an anti-lipolytic longer-acting analog of nicotinic acid, Acipimox (OLB, 5-Methylpyrazine-2-carboxylic acid 4-oxide, molecular weight of 154.1 Da). OLB administration strongly suppresses plasma FFA during exercise. Neuroendocrine perturbations of the adipose tissue (AT), gut, and brain peptides may be involved in the etiopathogenesis of eating disorders including bulimia nervosa (BN) and anorexia nervosa. BN is characterized by binge eating, self-induced vomiting or excessive exercise. Approach: To test the hypothesis that treatment with OLB together with exercise vs. exercise alone would induce feedback action of GH, pancreatic polypeptide (PP), peptide tyrosine tyrosine (PYY), and leptin on ghrelin in Czech women with BN and in healthy-weight Czech women (HW). The lipolysis rate (as glycerol release) in subcutaneous abdominal AT was assessed with microdialysis. At an academic medical center, 12 BN and 12 HW (the control group) were randomized to OLB 500 mg 1 h before a single exercise bout (45 min, 2 W/kg of lean body mass [LBM]) once a week vs. identical placebo over a total of 2 weeks. Blood plasma concentrations of GH, PP, PYY, leptin, ghrelin, FFA, glycerol, and concentrations of AT interstitial glycerol were estimated during the test by RIA utilizing 125I-labeled tracer, the electrochemiluminescence technique (ECLIA) or colorimetric kits. Results: OLB administration together with short-term exercise significantly increased plasma GH (P < 0.0001), PP (P < 0.0001), PYY, and leptin concentrations and significantly decreased plasma ghrelin (P < 0.01) concentrations in both groups, whereas short-term exercise with placebo resulted in plasma ghrelin (P < 0.05) decrease exclusively in BN. OLB administration together with short-term exercise significantly lowered local subcutaneous abdominal AT interstitial glycerol (P < 0.0001) to a greater extent in BN. Conclusion: OLB-induced suppression of plasma ghrelin concentrations together with short-term exercise and after the post-exercise recovering phase suggests a potential negative co-feedback of GH, PP, PYY, and leptin on ghrelin secretion to a greater extent in BN. Simultaneously, the exercise-induced elevation in AT interstitial glycerol leading to a higher inhibition of peripheral lipolysis by OLB in BN. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03338387.
- Keywords
- eating disorders, exercise, ghrelin, growth hormone, human adipose tissue, microdialysis, olbetam, pancreatic polypeptide family,
- Publication type
- Journal Article MeSH
Eating disorders such as anorexia (AN) and bulimia nervosa (BN) are characterized by abnormal eating behavior. The essential aspect of AN is that the individual refuses to maintain a minimal normal body weight. The main features of BN are binge eating and inappropriate compensatory methods to prevent weight gain. The gut-brain-adipose tissue (AT) peptides and neutralizing autoantibodies play an important role in the regulation of eating behavior and growth hormone release. The mechanisms for controlling food intake involve an interplay between gut, brain, and AT. Parasympathetic, sympathetic, and serotoninergic systems are required for communication between brain satiety centre, gut, and AT. These neuronal circuits include neuropeptides ghrelin, neuropeptide Y (NPY), peptide YY (PYY), cholecystokinin (CCK), leptin, putative anorexigen obestatin, monoamines dopamine, norepinephrine (NE), serotonin, and neutralizing autoantibodies. This extensive and detailed report reviews data that demonstrate that hunger-satiety signals play an important role in the pathogenesis of eating disorders. Neuroendocrine dysregulations of the AT-gut-brain axis peptides and neutralizing autoantibodies may result in AN and BN. The circulating autoantibodies can be purified and used as pharmacological tools in AN and BN. Further research is required to investigate the orexigenic/anorexigenic synthetic analogs and monoclonal antibodies for potential treatment of eating disorders in clinical practice.
- Publication type
- Journal Article MeSH
- Review MeSH