Most cited article - PubMed ID 22103846
Mast cells and basophils: trojan horses of conventional lin- stem/progenitor cell isolates
Cancer arises in the context of an in vivo tumor microenvironment. This microenvironment is both a cause and consequence of tumorigenesis. Tumor and host cells co-evolve dynamically through indirect and direct cellular interactions, eliciting multiscale effects on many biological programs, including cellular proliferation, growth, and metabolism, as well as angiogenesis and hypoxia and innate and adaptive immunity. Here we highlight specific biological processes that could be exploited as targets for the prevention and therapy of cancer. Specifically, we describe how inhibition of targets such as cholesterol synthesis and metabolites, reactive oxygen species and hypoxia, macrophage activation and conversion, indoleamine 2,3-dioxygenase regulation of dendritic cells, vascular endothelial growth factor regulation of angiogenesis, fibrosis inhibition, endoglin, and Janus kinase signaling emerge as examples of important potential nexuses in the regulation of tumorigenesis and the tumor microenvironment that can be targeted. We have also identified therapeutic agents as approaches, in particular natural products such as berberine, resveratrol, onionin A, epigallocatechin gallate, genistein, curcumin, naringenin, desoxyrhapontigenin, piperine, and zerumbone, that may warrant further investigation to target the tumor microenvironment for the treatment and/or prevention of cancer.
- Keywords
- Cancer biology, Cancer prevention, Cancer therapy, Tumor microenvironment,
- MeSH
- Molecular Targeted Therapy MeSH
- Carcinogenesis drug effects genetics MeSH
- Humans MeSH
- Tumor Microenvironment drug effects genetics MeSH
- Neoplasms drug therapy genetics prevention & control MeSH
- Neovascularization, Pathologic drug therapy genetics prevention & control MeSH
- Cell Proliferation drug effects MeSH
- Antineoplastic Agents therapeutic use MeSH
- Signal Transduction MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
- Names of Substances
- Antineoplastic Agents MeSH