Nejvíce citovaný článek - PubMed ID 22360485
Finding the smoking gun: protein tyrosine phosphatases as tools and targets of unicellular microorganisms and viruses
SIGNIFICANCE: Redox modifications of thiols serve as a molecular code enabling precise and complex regulation of protein tyrosine phosphatases (PTPs) and other proteins. Particular gasotransmitters and even the redox modifications themselves affect each other, of which a typical example is S-nitrosylation-mediated protection against the further oxidation of protein thiols. RECENT ADVANCES: For a long time, PTPs were considered constitutively active housekeeping enzymes. This view has changed substantially over the last two decades, and the PTP family is now recognized as a group of tightly and flexibly regulated fundamental enzymes. In addition to the conventional ways in which they are regulated, including noncovalent interactions, phosphorylation, and oxidation, the evidence that has accumulated during the past two decades suggests that many of these enzymes are also modulated by gasotransmitters, namely by nitric oxide (NO) and hydrogen sulfide (H2S). CRITICAL ISSUES: The specificity and selectivity of the methods used to detect nitrosylation and sulfhydration remains to be corroborated, because several researchers raised the issue of false-positive results, particularly when using the most widespread biotin switch method. Further development of robust and straightforward proteomic methods is needed to further improve our knowledge of the full extent of the gasotransmitters-mediated changes in PTP activity, selectivity, and specificity. FURTHER DIRECTIONS: Results of the hitherto performed studies on gasotransmitter-mediated PTP signaling await translation into clinical medicine and pharmacotherapeutics. In addition to directly affecting the activity of particular PTPs, the use of reversible S-nitrosylation as a protective mechanism against oxidative stress should be of high interest.
- MeSH
- aktivace enzymů MeSH
- lidé MeSH
- reaktivní formy dusíku metabolismus MeSH
- sulfan metabolismus MeSH
- tyrosinfosfatasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy dusíku MeSH
- sulfan MeSH
- tyrosinfosfatasy MeSH