Nejvíce citovaný článek - PubMed ID 22549556
Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma
Alarm signalling is of paramount importance to communication in all social insects. In termites, vibroacoustic and chemical alarm signalling are bound to operate synergistically but have never been studied simultaneously in a single species. Here, we inspected the functional significance of both communication channels in Constrictotermes cyphergaster (Termitidae: Nasutitermitinae), confirming the hypothesis that these are not exclusive, but rather complementary processes. In natural situations, the alarm predominantly attracts soldiers, which actively search for the source of a disturbance. Laboratory testing revealed that the frontal gland of soldiers produces a rich mixture of terpenoid compounds including an alarm pheromone. Extensive testing led to identification of the alarm pheromone being composed of abundant monoterpene hydrocarbons (1S)-α-pinene and myrcene, along with a minor component, (E)-β-ocimene. The vibratory alarm signalling consists of vibratory movements evidenced as bursts; a series of beats produced predominantly by soldiers. Exposing termite groups to various mixtures containing the alarm pheromone (crushed soldier heads, frontal gland extracts, mixture of all monoterpenes, and the alarm pheromone mixture made of standards) resulted in significantly higher activity in the tested groups and also increased intensity of the vibratory alarm communication, with the responses clearly dose-dependent. Lower doses of the pheromone provoked higher numbers of vibratory signals compared to higher doses. Higher doses induced long-term running of all termites without stops necessary to perform vibratory behaviour. Surprisingly, even crushed worker heads led to low (but significant) increases in the alarm responses, suggesting that other unknown compound in the worker's head is perceived and answered by termites. Our results demonstrate the existence of different alarm levels in termites, with lower levels being communicated through vibratory signals, and higher levels causing general alarm or retreat being communicated through the alarm pheromone.
- Klíčová slova
- Alarm communication, Alarm pheromone, Defence, Isoptera, Nasutitermitinae, Vibroacoustic communication,
- Publikační typ
- časopisecké články MeSH
Effective defense is a common characteristic of insect societies. Indeed, the occurrence of specialized defenders, soldiers, has been the first step toward eusociality in several independent lineages, including termites. Among the multitude of defensive strategies used by termite soldiers, defense by chemicals plays a crucial role. It has evolved with complexity in advanced isopteran lineages, whose soldiers are equipped with a unique defensive organ, the frontal gland. Besides direct defense against predators, competitors, and pathogens, the chemicals emitted by soldiers from the frontal gland are used as signals of alarm. In this study, we investigated the chemical composition of the defensive secretion produced by soldiers of the termite Termitogeton planus (Isoptera: Rhinotermitidae), from West Papua, and the effects of this secretion on the behavior of termite groups. Detailed two-dimensional gas chromatography/mass spectrometry analyses of the soldier defensive secretion revealed the presence of four linear and nine monoterpene hydrocarbons. Soldier head extracts, as well as synthetic mixtures of the monoterpenes found in these extracts, elicited alarm behavior in both soldiers and pseudergates. Our results suggest that the alarm is not triggered by a single monoterpene from the defensive blend, but by a multi-component signal combining quantitatively major and minor compounds.
- MeSH
- exokrinní žlázy chemie MeSH
- feromony chemie MeSH
- Isoptera chemie fyziologie MeSH
- monoterpeny chemie MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- sociální chování MeSH
- uhlovodíky chemie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- feromony MeSH
- monoterpeny MeSH
- uhlovodíky MeSH