Most cited article - PubMed ID 22607487
Local electrogram delay recorded from left ventricular lead at implant predicts response to cardiac resynchronization therapy: retrospective study with 1 year follow up
This study aimed to identify time parameters predicting favourable CRT response. A total of 38 patients with ischemic cardiomyopathy, qualified for CRT implantation, were enrolled in the study. A 15% reduction in indexed end-systolic volume after 6 months was a criterion for a positive response to CRT. We evaluated QRS duration, measured from a standard ECG before and after CRT implantation and obtained from mapping with NOGA XP system (AEMM); and the delay, measured with the implanted device algorithm (DCD) and its change after 6 months (ΔDCD); and selected delay parameters between the left and right ventricles based on AEMM data. A total of 24 patients presented with a positive response to CRT versus 9 non-responders. After CRT implantation, we observed differences between responders and non-responders group in the reduction of QRS duration (31 ms vs. 16 ms), duration of paced QRS (123 ms vs. 142 ms), and the change of ΔDCDMaximum (4.9 ms vs. 0.44 ms) and ΔDCDMean (7.7 ms vs. 0.9 ms). The difference in selected parameters obtained during AEMM in both groups was related to interventricular delay (40.3 ms vs. 18.6 ms). Concerning local activation time and left ventricular activation time, we analysed the delays in individual left ventricular segments. Predominant activation delay of the posterior wall middle segment was associated with a better response to CRT. Some AEMM parameters, paced QRS time of less than 120 ms and reduction of QRS duration greater than 20 ms predict the response to CRT. ΔDCD is associated with favourable electrical and structural remodelling.Clinical trial registration: SUM No. KNW/0022/KB1/17/15.
- MeSH
- Time Factors MeSH
- Electrocardiography MeSH
- Humans MeSH
- Cardiac Resynchronization Therapy * MeSH
- Heart Failure * therapy MeSH
- Treatment Outcome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Device-based algorithms offer the potential for automated optimization of cardiac resynchronization therapy (CRT), but the process for accepting them into clinical use is currently still ad-hoc, rather than based on pre-clinical and clinical testing of specific features of validity. We investigated how the QuickOpt-guided VV delay (VVD) programming performs against the clinical and engineering heuristic of QRS complex shortening by CRT. METHODS: A prospective, 2-center study enrolled 37 consecutive patients with CRT. QRS complex duration (QRSd) was assessed during intrinsic atrioventricular conduction, synchronous biventricular pacing, and biventricular pacing with QuickOpt-proposed VVD. The measurements were done manually by electronic calipers in signal-averaged and magnified 12-lead QRS complexes. RESULTS: Native QRSd was 174 ± 22 ms. Biventricular pacing with empiric AVD and synchronous VVD resulted in QRSd 156 ± 20 ms, a significant narrowing from the baseline QRSd by 17 ± 27 ms, P = 0.0003. In 36 of 37 patients, the QuickOpt algorithm recommended left ventricular preexcitation with VVD of 42 ± 18 ms (median 40 ms; interquartile range 30-55 ms, P <0.00001). QRSd in biventricular pacing with QuickOpt-based VVD was significantly longer compared with synchronous biventricular pacing (168 ± 25 ms vs. 156 ± 20 ms; difference 12 ± 11ms; P <0.00001). This prolongation correlated with the absolute VVD value (R = 0.66, P <0.00001). CONCLUSIONS: QuickOpt algorithm systematically favours a left-preexcitation VVD which translates into a significant prolongation of the QRSd compared to synchronous biventricular pacing. There is no reason to believe that a manipulation that systematically widens QRSd should be considered to optimize physiology. Device-based CRT optimization algorithms should undergo systematic mechanistic pre-clinical evaluation in various scenarios before they are tested in large clinical studies.
BACKGROUND: The left ventricular (LV) lead local electrogram (EGM) delay from the beginning of the QRS complex (QLV) is considered a strong predictor of response to cardiac resynchronization therapy. We have developed a method for fast epicardial QLV mapping during video-thoracoscopic surgery to guide LV lead placement. METHODS: A three-port, video-thoracoscopic approach was used for LV free wall epicardial mapping and lead implantation. A decapolar electrophysiological catheter was introduced through one port and systematically attached to multiple accessible LV sites. The pacing lead was targeted to the site with maximum QLV. The LV free wall activation pattern was analyzed in 16 pre-specified anatomical segments. RESULTS: We implanted LV leads in 13 patients with LBBB or IVCD. The procedural and mapping times were 142 ± 39 minutes and 20 ± 9 minutes, respectively. A total of 15.0 ± 2.2 LV segments were mappable with variable spatial distribution of QLV-optimum. The QLV ratio (QLV/QRSd) at the optimum segment was significantly higher (by 0.17 ± 0.08, p < 0.00001) as compared to an empirical midventricular lateral segment. The LV lead was implanted at the optimum segment in 11 patients (at an adjacent segment in 2 patients) achieving a QLV ratio of 0.82 ± 0.09 (range 0.63-0.93) and 99.5 ± 0.6% match with intraprocedural mapping. CONCLUSION: Video-thoracoscopic LV lead implantation can be effectively and safely guided by epicardial QLV mapping. This strategy was highly successful in targeting the selected LV segment and resulted in significantly higher QLV ratios compared to an empirical midventricular lateral segment.
- Keywords
- cardiac resynchronization therapy, epicardial mapping, heart failure, implantable cardioverter defibrillator, left ventricular lead, thoracoscopic implantation, video,
- MeSH
- Bundle-Branch Block diagnosis physiopathology therapy MeSH
- Time Factors MeSH
- Equipment Design MeSH
- Epicardial Mapping * MeSH
- Ventricular Function, Left MeSH
- Thoracic Surgery, Video-Assisted * MeSH
- Ventricular Pressure MeSH
- Middle Aged MeSH
- Humans MeSH
- Pericardium physiopathology MeSH
- Predictive Value of Tests MeSH
- Cardiac Resynchronization Therapy Devices * MeSH
- Aged MeSH
- Heart Ventricles physiopathology surgery MeSH
- Cardiac Resynchronization Therapy * adverse effects MeSH
- Feasibility Studies MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH