Most cited article - PubMed ID 22650240
5-azacytosine compounds in medicinal chemistry: current stage and future perspectives
Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.
- Keywords
- ATPase, DNA helicase, DNA replication, large T antigen, nucleoside analogs, polyomavirus, protein-DNA interactions,
- MeSH
- Antigens, Viral, Tumor * MeSH
- Cytosine MeSH
- DNA, Viral genetics MeSH
- Esters pharmacology MeSH
- Humans MeSH
- Nucleotides MeSH
- Polyomavirus * genetics MeSH
- DNA Replication MeSH
- Virus Replication MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antigens, Viral, Tumor * MeSH
- Cytosine MeSH
- DNA, Viral MeSH
- Esters MeSH
- Nucleotides MeSH
With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N 1 and O 2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity.
- Keywords
- 5-Azacytosine, Acyclic nucleoside phosphonates, Fluorinated nucleotides, Phosphonates, Prodrugs,
- Publication type
- Journal Article MeSH
New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50's of 0.15-1.12µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.
- Keywords
- 5-Azacytosine, Acyclic nucleoside phosphonates, Antivirals, HPMP-5-azaC, Open-ring, PME-azaC, PMEO-DAPy, Phosphonate, Prodrug,
- MeSH
- Antiviral Agents chemical synthesis chemistry pharmacology MeSH
- Cell Line MeSH
- Cytomegalovirus drug effects MeSH
- Humans MeSH
- Organophosphonates chemical synthesis chemistry pharmacology MeSH
- Prodrugs chemical synthesis chemistry pharmacology MeSH
- Pyrimidine Nucleosides chemistry MeSH
- Simplexvirus drug effects MeSH
- Herpesvirus 3, Human drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antiviral Agents MeSH
- Organophosphonates MeSH
- Prodrugs MeSH
- Pyrimidine Nucleosides MeSH