Nejvíce citovaný článek - PubMed ID 22686835
Secondary alcohol dehydrogenase catalyzes the reduction of exogenous acetone to 2-propanol in Trichomonas vaginalis
Naegleria gruberi is a free-living heterotrophic aerobic amoeba well known for its ability to transform from an amoeba to a flagellate form. The genome of N. gruberi has been recently published, and in silico predictions demonstrated that Naegleria has the capacity for both aerobic respiration and anaerobic biochemistry to produce molecular hydrogen in its mitochondria. This finding was considered to have fundamental implications on the evolution of mitochondrial metabolism and of the last eukaryotic common ancestor. However, no actual experimental data have been shown to support this hypothesis. For this reason, we have decided to investigate the anaerobic metabolism of the mitochondrion of N. gruberi. Using in vivo biochemical assays, we have demonstrated that N. gruberi has indeed a functional [FeFe]-hydrogenase, an enzyme that is attributed to anaerobic organisms. Surprisingly, in contrast to the published predictions, we have demonstrated that hydrogenase is localized exclusively in the cytosol, while no hydrogenase activity was associated with mitochondria of the organism. In addition, cytosolic localization displayed for HydE, a marker component of hydrogenase maturases. Naegleria gruberi, an obligate aerobic organism and one of the earliest eukaryotes, is producing hydrogen, a function that raises questions on the purpose of this pathway for the lifestyle of the organism and potentially on the evolution of eukaryotes.
- Klíčová slova
- Naegleria, hydrogen hypothesis, hydrogenase, maturases, mitochondrial evolution,
- MeSH
- cytosol enzymologie MeSH
- hydrogenasa genetika metabolismus MeSH
- mitochondrie genetika metabolismus MeSH
- Naegleria enzymologie genetika MeSH
- protozoální proteiny genetika metabolismus MeSH
- vodík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- hydrogenasa MeSH
- protozoální proteiny MeSH
- vodík MeSH