Most cited article - PubMed ID 23171649
High diversity of RNA viruses in rodents, Ethiopia
Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.
- Keywords
- Arteriviridae, cross-species transmission, host spectrum, rodent-borne arteriviruses, virus evolution,
- MeSH
- Arteriviridae classification genetics isolation & purification MeSH
- Biological Evolution MeSH
- Phylogeny MeSH
- Genome, Viral * MeSH
- Rodentia virology MeSH
- RNA Virus Infections veterinary virology MeSH
- Whole Genome Sequencing MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Africa South of the Sahara MeSH
In 2012, Tigray orthohantavirus was discovered in Ethiopia, but its seasonal infection in small mammals, and whether it poses a risk to humans was unknown. The occurrence of small mammals, rodents and shrews, in human inhabitations in northern Ethiopia is affected by season and presence of stone bunds. We sampled small mammals in two seasons from low- and high-density stone bund fields adjacent to houses and community-protected semi-natural habitats in Atsbi and Hagere Selam, where Tigray orthohantavirus was first discovered. We collected blood samples from both small mammals and residents using filter paper. The presence of orthohantavirus-reactive antibodies in blood was then analyzed using immunofluorescence assay (human samples) and enzyme linked immunosorbent assays (small mammal samples) with Puumala orthohantavirus as antigen. Viral RNA was detected by RT-PCR using small mammal blood samples. Total orthohantavirus prevalence (antibodies or virus RNA) in the small mammals was 3.37%. The positive animals were three Stenocephalemys albipes rats (prevalence in this species = 13.04%). The low prevalence made it impossible to determine whether season and stone bunds were associated with orthohantavirus prevalence in the small mammals. In humans, we report the first detection of orthohantavirus-reactive IgG antibodies in Ethiopia (seroprevalence = 5.26%). S. albipes lives in close proximity to humans, likely increasing the risk of zoonotic transmission.
- Keywords
- Ethiopia, orthohantavirus, risk factors, rodents, rural community,
- MeSH
- Hantavirus Infections epidemiology immunology transmission MeSH
- Orthohantavirus genetics immunology MeSH
- Immunoglobulin G blood MeSH
- Rats MeSH
- Humans MeSH
- Prevalence MeSH
- Antibodies, Viral blood MeSH
- Cross-Sectional Studies MeSH
- Risk Factors MeSH
- RNA, Viral genetics MeSH
- Rural Population MeSH
- Disease Reservoirs virology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia epidemiology MeSH
- Names of Substances
- Immunoglobulin G MeSH
- Antibodies, Viral MeSH
- RNA, Viral MeSH
Rodents are a speciose group of mammals with strong zoonotic potential. Some parts of Africa are still underexplored for the occurrence of rodent-borne pathogens, despite this high potential. Angola is at the convergence of three major biogeographical regions of sub-Saharan Africa, each harbouring a specific rodent community. This rodent-rich area is, therefore, strategic for studying the diversity and evolution of rodent-borne viruses. In this study we examined 290 small mammals, almost all rodents, for the presence of mammarenavirus and hantavirus RNA. While no hantavirus was detected, we found three rodent species positive for distinct mammarenaviruses with a particularly high prevalence in Namaqua rock rats (Micaelamys namaquensis). We characterised four complete virus genomes, which showed typical mammarenavirus organisation. Phylogenetic and genetic distance analyses revealed: (i) the presence of a significantly divergent strain of Luna virus in Angolan representatives of the ubiquitous Natal multimammate mouse (Mastomys natalensis), (ii) a novel Okahandja-related virus associated with the Angolan lineage of Micaelamys namaquensis for which we propose the name Bitu virus (BITV) and (iii) the occurrence of a novel Mobala-like mammarenavirus in the grey-bellied pygmy mouse (Mus triton) for which we propose the name Kwanza virus (KWAV). This high virus diversity in a limited host sample size and in a relatively small geographical area supports the idea that Angola is a hotspot for mammarenavirus diversity.
- Keywords
- Angola, Mastomys natalensis, Micaelamys namaquensis, Mus triton, hantaviruses, mammarenaviruses, phylogeny,
- MeSH
- Arenaviridae classification genetics MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Arenaviridae Infections veterinary MeSH
- Geography, Medical MeSH
- Prevalence MeSH
- RNA, Viral MeSH
- Whole Genome Sequencing MeSH
- Disease Reservoirs virology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Viral MeSH
Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.
- Keywords
- Hepatits C virus, cross-species transmission, hepacivirus co-infection, recombination, rodent hepacivirus,
- Publication type
- Journal Article MeSH
Orthohantaviruses are RNA viruses that some members are known to cause severe zoonotic diseases in humans. Orthohantaviruses are hosted by rodents, soricomorphs (shrews and moles), and bats. Only two orthohantaviruses associated with murid rodents are known in Africa, Sangassou orthohantavirus (SANGV) in two species of African wood mice (Hylomyscus), and Tigray orthohantavirus (TIGV) in the Ethiopian white-footed rat (Stenocephalemys albipes). In this article, we report evidence that, like SANGV, two strains of TIGV occur in two genetically related rodent species, S. albipes and S. sp. A, occupying different elevational zones in the same mountain. Investigating the other members of the genus Stenocephalemys for TIGV could reveal the real diversity of TIGV in the genus.
- Keywords
- Afroalpine, Simien Mountains, Stenocephalemys, orthohantavirus, phylogeny,
- MeSH
- Species Specificity MeSH
- Phylogeny MeSH
- Hantavirus Infections epidemiology veterinary virology MeSH
- Orthohantavirus genetics MeSH
- Rodentia MeSH
- Humans MeSH
- Rodent Diseases epidemiology virology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Ethiopia epidemiology MeSH