Phylogenomic Characterization of Lopma Virus and Praja Virus, Two Novel Rodent-Borne Arteriviruses
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34578423
PubMed Central
PMC8473226
DOI
10.3390/v13091842
PII: v13091842
Knihovny.cz E-zdroje
- Klíčová slova
- Arteriviridae, cross-species transmission, host spectrum, rodent-borne arteriviruses, virus evolution,
- MeSH
- Arteriviridae klasifikace genetika izolace a purifikace MeSH
- biologická evoluce MeSH
- fylogeneze MeSH
- genom virový * MeSH
- hlodavci virologie MeSH
- infekce RNA viry veterinární virologie MeSH
- sekvenování celého genomu MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- subsaharská Afrika MeSH
Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.
Institute of Vertebrate Biology The Czech Academy of Sciences Květná 8 603 65 Brno Czech Republic
OD Taxonomy and Phylogeny Royal Institute of Natural Sciences Vautierstreet 29 1000 Brussels Belgium
Zobrazit více v PubMed
Gortazar C., Reperant L.A., Kuiken T., de la Fuente J., Boadella M., Martínez-Lopez B., Ruiz-Fons F., Estrada-Peña A., Drosten C., Medley G., et al. Crossing the Interspecies Barrier: Opening the Door to Zoonotic Pathogens. PLoS Pathog. 2014;10:e1004129. doi: 10.1371/journal.ppat.1004129. PubMed DOI PMC
Lipkin W.I., Anthony S.J. Virus hunting. Virology. 2015;479–480:194–199. doi: 10.1016/j.virol.2015.02.006. PubMed DOI
Mollentze N., Streicker D.G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl. Acad. Sci. USA. 2020;117:9423–9430. doi: 10.1073/pnas.1919176117. PubMed DOI PMC
Luis A.D., Hayman D.T.S., O’Shea T.J., Cryan P.M., Gilbert A.T., Pulliam J.R.C., Mills J.N., Timonin M.E., Willis C.K.R., Cunningham A.A., et al. A comparison of bats and rodents as reservoirs of zoonotic viruses: Are bats special? Proc. Biol. Sci. 2013;280 doi: 10.1098/rspb.2012.2753. PubMed DOI PMC
Bailey A.L., Lauck M., Sibley S.D., Friedrich T., Kuhn J.H., Freimer N.B., Jasinska A.J., Phillips-Conroy J.E., Jolly C.J., Marx P.A., et al. Zoonotic Potential of Simian Arteriviruses. J. Virol. 2016;90:630–635. doi: 10.1128/JVI.01433-15. PubMed DOI PMC
Balasuriya U.B., MacLachlan N.J. The immune response to equine arteritis virus: Potential lessons for other arteriviruses. Veter.-Immunol. Immunopathol. 2004;102:107–129. doi: 10.1016/j.vetimm.2004.09.003. PubMed DOI
Lunney J.K., Benfield D.A., Rowland R.R. Porcine reproductive and respiratory syndrome virus: An update on an emerging and re-emerging viral disease of swine. Virus Res. 2010;154:1–6. doi: 10.1016/j.virusres.2010.10.009. PubMed DOI PMC
Giles J., Perrott M., Roe W., Dunowska M. The aetiology of wobbly possum disease: Reproduction of the disease with purified nidovirus. Virology. 2016;491:20–26. doi: 10.1016/j.virol.2016.01.005. PubMed DOI
Mackintosh C.G., Crawford J.L., Thompson E.G., McLeod B.J., Gill J.M., O’Keefe J.S. A newly discovered disease of the brushtail possum: Wobbly possum syndrome. N. Z. Vet. J. 1995;43:126. doi: 10.1080/00480169.1995.35869. PubMed DOI
Rowson K.E., Mahy B.W. Lactate dehydrogenase-elevating virus. Pt 11J. Gen. Virol. 1985;66:2297–2312. doi: 10.1099/0022-1317-66-11-2297. PubMed DOI
Wahl-Jensen V., Johnson J.C., Lauck M., Weinfurter J.T., Moncla L.H., Weiler A.M., Charlier O., Rojas O., Byrum R., Ragland D.R., et al. Divergent Simian Arteriviruses Cause Simian Hemorrhagic Fever of Differing Severities in Macaques. mBio. 2016;7:e02009–e02015. doi: 10.1128/mBio.02009-15. PubMed DOI PMC
Snijder E.J., Kikkert M., Fang Y. Arterivirus molecular biology and pathogenesis. J. Gen. Virol. 2013;94:2141–2163. doi: 10.1099/vir.0.056341-0. PubMed DOI
Posthuma C.C., Velthuis A.T., Snijder E. Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes. Virus Res. 2017;234:58–73. doi: 10.1016/j.virusres.2017.01.023. PubMed DOI PMC
Godeny E.K., de Vries A.A., Wang X.C., Smith S.L., de Groot R.J. Identification of the leader-body junctions for the viral subgenomic mRNAs and organization of the simian hemorrhagic fever virus genome: Evidence for gene duplication during arterivirus evolution. J. Virol. 1998;72:862–867. doi: 10.1128/JVI.72.1.862-867.1998. PubMed DOI PMC
Vatter H.A., Di H., Donaldson E.F., Baric R.S., Brinton M.A. Each of the eight simian hemorrhagic fever virus minor structural proteins is functionally important. Virology. 2014;462–463:351–362. doi: 10.1016/j.virol.2014.06.001. PubMed DOI PMC
Di H., Madden J.C., Jr., Morantz E.K., Tang H.Y., Graham R.L., Baric R.S., Brinton M.A. Expanded subgenomic mRNA transcriptome and coding capacity of a nidovirus. Proc. Natl. Acad. Sci. USA. 2017;114:E8895–E8904. doi: 10.1073/pnas.1706696114. PubMed DOI PMC
ICTV ICTV 2019 Master Species List (MSL35) 2020. [(accessed on 3 December 2020)]. Available online: https://talk.ictvonline.org/files/master-species-lists/m/msl/9601.
Kesäniemi J., Lavrinienko A., Tukalenko E., Mappes T., Watts P.C., Jurvansuu J. Infection Load and Prevalence of Novel Viruses Identified from the Bank Vole Do Not Associate with Exposure to Environmental Radioactivity. Viruses. 2019;12:44. doi: 10.3390/v12010044. PubMed DOI PMC
Shi M., Lin X.-D., Chen X., Tian J.-H., Chen L.-J., Li K., Wang W., Eden J.-S., Shen J.-J., Liu L., et al. The evolutionary history of vertebrate RNA viruses. Nature. 2018;556:197–202. doi: 10.1038/s41586-018-0012-7. PubMed DOI
Wu Z., Han Y., Liu B., Li H., Zhu G., Latinne A., Dong J., Sun L., Du J., Zhou S., et al. Decoding the RNA Viromes of Rodent Lungs Provides New Visions into the Origin and Evolution Pattern of Rodent-Borne Diseases in Mainland Southeast Asia. PREPRINT (Version 1) Available at Research Square. 2020. [(accessed on 22 December 2020)]. Available online: https://www.researchsquare.com/article/rs-17323/v1.
Van de Perre F., Willig M.R., Presley S.J., Bapeamoni Andemwana F., Beeckman H., Boeckx P., Cooleman S., de Haan M., De Kesel A., Dessein S., et al. Reconciling biodiversity and carbon stock conservation in an Afrotropical forest landscape. Sci. Adv. 2018;4:eaar6603. doi: 10.1126/sciadv.aar6603. PubMed DOI PMC
Gryseels S., Baird S.J.E., Borremans B., Makundi R., Leirs H., Gouy de Bellocq J. When Viruses Don’t Go Viral: The Importance of Host Phylogeographic Structure in the Spatial Spread of Arenaviruses. PLoS Pathog. 2017;13:e1006073. doi: 10.1371/journal.ppat.1006073. PubMed DOI PMC
Tesikova J., Bryjova A., Bryja J., Lavrenchenko L.A., Gouy de Bellocq J. Hantavirus Strains in East Africa Related to Western African Hantaviruses. Vector Borne Zoonotic Dis. 2017;17:278–280. doi: 10.1089/vbz.2016.2022. PubMed DOI
Gryseels S., Rieger T., Oestereich L., Cuypers B., Borremans B., Makundi R., Leirs H., Gunther S., Gouy de Bellocq J. Gairo virus, a novel arenavirus of the widespread Mastomys natalensis: Genetically divergent, but ecologically similar to Lassa and Morogoro viruses. Virology. 2015;476:249–256. doi: 10.1016/j.virol.2014.12.011. PubMed DOI
Makundi R.H., Massawe A.W., Borremans B., Laudisoit A., Katakweba A. We are connected: Flea–host association networks in the plague outbreak focus in the Rift Valley, northern Tanzania. Wildl. Res. 2015;42:196–206. doi: 10.1071/WR14254. DOI
Massawe A.W., Makundi R.H., Mulungu L.S., Katakweba A., Shayo T.N. Breeding dynamics of rodent species inhabiting farm–fallow mosaic fields in Central Tanzania. Afr. Zool. 2012;47:128–137. doi: 10.1080/15627020.2012.11407531. DOI
Meheretu Y., Čížková D., Těšíková J., Welegerima K., Tomas Z., Kidane D., Girmay K., Schmidt-Chanasit J., Bryja J., Günther S., et al. High Diversity of RNA Viruses in Rodents, Ethiopia. Emerg. Infect. Dis. 2012;18:2047–2050. doi: 10.3201/eid1812.120596. PubMed DOI PMC
Gouy de Bellocq J., Borremans B., Katakweba A., Makundi R., Baird S.J., Becker-Ziaja B., Günther S., Leirs H. Sympatric Occurrence of 3 Arenaviruses, Tanzania. Emerg. Infect. Dis. 2010;16:692–695. doi: 10.3201/eid1604.091721. PubMed DOI PMC
Laudisoit A., Leirs H., Makundi R., Krasnov B.R. Seasonal and habitat dependence of fleas parasitic on small mammals in Tanzania. Integr. Zool. 2009;4:196–212. doi: 10.1111/j.1749-4877.2009.00150.x. PubMed DOI
Bletsa M., Vrancken B., Gryseels S., Boonen I., Fikatas A., Li Y., Laudisoit A., Lequime S., Bryja J., Makun-di R., et al. Molecular detection and genomic characterisation of diverse hepaciviruses in African rodents. Virus Evol. 2021;7:veab036. doi: 10.1093/ve/veab036. PubMed DOI PMC
National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) [(accessed on 15 January 2018)];2018 Available online: https://blast.ncbi.nlm.nih.gov/blast.cgi.
Larsson A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–3278. doi: 10.1093/bioinformatics/btu531. PubMed DOI PMC
Katoh K., Standley D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Criscuolo A., Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010;10:210. doi: 10.1186/1471-2148-10-210. PubMed DOI PMC
Nguyen L.T., Schmidt H.A., von Haeseler A., Minh B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Bao Y., Chetvernin V., Tatusova T. Improvements to pairwise sequence comparison (PASC): A genome-based web tool for virus classification. Arch. Virol. 2014;159:3293–3304. doi: 10.1007/s00705-014-2197-x. PubMed DOI PMC
Dastjerdi A., Inglese N., Partridge T., Karuna S., Everest D.J., Frossard J.-P., Dagleish M.P., Stidworthy M.F. Novel Arterivirus Associated with Outbreak of Fatal Encephalitis in European Hedgehogs, England, 2019. Emerg. Infect. Dis. 2021;27:578–581. doi: 10.3201/eid2702.201962. PubMed DOI PMC
Upham N.S., Esselstyn J.A., Jetz W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 2019;17:e3000494. doi: 10.1371/journal.pbio.3000494. PubMed DOI PMC
Paradis E., Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Fang Y., Treffers E., Li Y., Tas A., Sun Z., van der Meer Y., de Ru A.H., van Veelen P., Atkins J., Snijder E.J., et al. Efficient -2 frameshifting by mammalian ribosomes to synthesize an additional arterivirus protein. Proc. Natl. Acad. Sci. USA. 2012;109:E2920–E2928. doi: 10.1073/pnas.1211145109. PubMed DOI PMC
Gulyaeva A., Dunowska M., Hoogendoorn E., Giles J., Samborskiy D., Gorbalenya A.E. Domain Organization and Evolution of the Highly Divergent 5’ Coding Region of Genomes of Arteriviruses, Including the Novel Possum Nidovirus. J. Virol. 2017;91 doi: 10.1128/JVI.02096-16. PubMed DOI PMC
Snijder E.J., Wassenaar A.L., Spaan W.J., Gorbalenya A.E. The arterivirus Nsp2 protease. An unusual cysteine protease with primary structure similarities to both papain-like and chymotrypsin-like proteases. J. Biol. Chem. 1995;270:16671–16676. doi: 10.1074/jbc.270.28.16671. PubMed DOI
Archambault D., Balasuriya U.B., Rowland R.R., Yang H., Yoo D. Animal arterivirus infections. Biomed. Res. Int. 2014;2014:303841. doi: 10.1155/2014/303841. PubMed DOI PMC
Li Y., Tas A., Sun Z., Snijder E.J., Fang Y. Proteolytic processing of the porcine reproductive and respiratory syndrome virus replicase. Virus Res. 2015;202:48–59. doi: 10.1016/j.virusres.2014.12.027. PubMed DOI
Li Y., Shang P., Shyu D., Carrillo C., Naraghi-Arani P., Jaing C.J., Renukaradhya G.J., Firth A.E., Snijder E.J., Fang Y. Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology. 2018;517:164–176. doi: 10.1016/j.virol.2017.12.017. PubMed DOI PMC
Wassenaar A.L., Spaan W.J., Gorbalenya A.E., Snijder E.J. Alternative proteolytic processing of the arterivirus replicase ORF1a polyprotein: Evidence that NSP2 acts as a cofactor for the NSP4 serine protease. J. Virol. 1997;71:9313–9322. doi: 10.1128/jvi.71.12.9313-9322.1997. PubMed DOI PMC
Monadjem A. Rodents of Sub-Saharan Africa: A Biogeographic and Taxonomic Synthesis. 1092p. 2015. [(accessed on 22 December 2020)]. Available online: https://www-degruyter-com.kuleuven.e-bronnen.be/document/doi/10.1515/9783110301915/html. DOI
Vanmechelen B., Bletsa M., Laenen L., Lopes A.R., Vergote V., Beller L., Deboutte W., Korva M., Županc T.A., Gouy de Bellocq J., et al. Discovery and genome characterization of three new Jeilongviruses, a lineage of paramyxoviruses characterized by their unique membrane proteins. BMC Genom. 2018;19:1–11. doi: 10.1186/s12864-018-4995-0. PubMed DOI PMC
Hooper C.C., Van Alstine W.G., Stevenson G.W., Kanitz C.L. Mice and rats (laboratory and feral) are not a reservoir for PRRS virus. J. Vet. Diagn. Inv. 1994;6:13–15. doi: 10.1177/104063879400600103. PubMed DOI
Cui J., Tachedjian G., Wang L.-F. Bats and Rodents Shape Mammalian Retroviral Phylogeny. Sci. Rep. 2015;5:16561. doi: 10.1038/srep16561. PubMed DOI PMC
Souza W.M., Bello G., Amarilla A.A., Alfonso H.L., Aquino V.H., Figueiredo L.T. Phylogeography and evolutionary history of rodent-borne hantaviruses. Infect. Genet. Evol. 2014;21:198–204. doi: 10.1016/j.meegid.2013.11.015. PubMed DOI
Kuhn J.H., Lauck M., Bailey A.L., Shchetinin A.M., Vishnevskaya T.V., Bào Y., Ng T.F.F., LeBreton M., Schneider B.S., Gillis A., et al. Reorganization and expansion of the nidoviral family Arteriviridae. Arch. Virol. 2015;161:755–768. doi: 10.1007/s00705-015-2672-z. PubMed DOI PMC
Arteriviridae Study Group Expansion of the Rank Structure of the Family Arteriviridae and Renaming Its Taxa. 2017. [(accessed on 2 December 2020)]. Available online: https://talk.ictvonline.org/taxonomy/p/taxonomy-history?taxnode_id=20171822.