Most cited article - PubMed ID 23523721
Robust assessment of moderate heavy metal contamination levels in floodplain sediments: a case study on the Jizera River, Czech Republic
A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for humankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization (PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil, the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr (96.36%), followed by Cu (54.94%) and Pb (49.40%). On the other hand, the mineral soil had Cu (96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the mineral soil revealed a high heterogeneous variability. Though the study area lies within the "Black Triangle", which is a historic industrial site in Central Europe, this result did not show a substantial influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being very low based on the findings, there may be a need for intermittent assessment of the soil. This helps to curtail any excessive accumulation and escalation in future. The results may serve as baseline information for pollution assessment. It might support policy-developers in sustainable farming and forestry for the health of an ecosystem towards food security, forest safety, as well as animal and human welfare.
- Keywords
- GIS-kriging, contamination factor, heavy metals, pollution load index, positive matrix factorization,
- Publication type
- Journal Article MeSH
Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.
- Keywords
- Flood, Heavy metals, Mobilization, Pollution, River, Sediment,
- Publication type
- Journal Article MeSH