Nejvíce citovaný článek - PubMed ID 23603437
Virus quantitation by transmission electron microscopy, TCID₅₀, and the role of timing virus harvesting: a case study of three animal viruses
The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV) are used. The present article describes the process of preparation and use of such PCV- MS2 phage-like particles (MS2 PLP) - in RT-qPCR detection and quantification of enteric RNA viruses. The MS2 PLP were derived from bacteriophage MS2 carrying a unique and specific de novo-constructed RNA target sequence originating from the DNA of two extinct species. The amount of prepared MS2 particles was quantified using four independent methods - UV spectrophotometry, fluorimetry, transmission electron microscopy and a specifically developed duplex RT-qPCR. To evaluate the usefulness of MS2 PLP in routine diagnostics different matrices known to harbor enteric RNA viruses (swab samples, liver tissue, serum, feces, and vegetables) were artificially contaminated with specific amounts of MS2 PLP. The extraction efficiencies were calculated for each individual matrix. The prepared particles fulfill all requirements for PCV - they are very stable, non-infectious, and are genetically distinct from the target RNA viruses. Due to these properties they represent a good morphological and physiochemical model. The use of MS2 PLP as a PCV in detection and quantification of enteric RNA viruses was evaluated in different types of matrices.
- Klíčová slova
- MS2 phage-like particle, RNA virus, RT-qPCR, detection, extraction efficiency calculation, isolation, process control virus, quantification,
- Publikační typ
- časopisecké články MeSH
Population of wild boar is increasing in the whole Europe, the animals migrate close to human habitats which greatly increases the possibility of natural transmission between domestic animals or humans and wild boars. The aim of the study was to estimate in population of free-living wild boar in the Czech Republic the prevalence of enteric viral pathogens, namely rotavirus groups A and C (RVA and RVC), porcine reproductive and respiratory syndrome virus (PRRSV), and members of family Coronaviridae (transmissible gastroenteritis virus - TGEV, porcine epidemic diarrhea virus - PEDV, porcine respiratory coronavirus - PRCV, and porcine hemagglutination encephalomyelitis virus - PHEV) and Picornaviridae,(teschovirus A - PTV, sapelovirus A - PSV, and enterovirus G - EV-G). In our study, stool samples from 203 wild boars culled during hunting season 2014-2015 (from October to January) were examined by RT-PCR. RVA was detected in 2.5% of tested samples. Nucleotide analysis of VP7, VP4, and VP6 genes revealed that four RVA strains belong to G4P[25]I1, G4P[6]I5, G11P[13]I5, and G5P[13]I5 genotypes and phylogenetic analysis suggested close relation to porcine and human RVAs. The prevalence of RVC in wild boar population reached 12.8%, PTV was detected in 20.2%, PSV in 8.9%, and EV-G in 2.5% of samples. During our study no PRRSV or coronaviruses were detected. Our study provides the first evidence of RVC prevalence in wild boars and indicates that wild boars might contribute to the genetic variability of RVA and also serve as an important reservoir of other enteric viruses.
- Klíčová slova
- Enteric viruses, Phylogeny, RT-PCR, Rotavirus A, Wild boar,
- MeSH
- antigeny virové genetika MeSH
- Coronaviridae genetika izolace a purifikace MeSH
- feces virologie MeSH
- fylogeneze MeSH
- genotyp MeSH
- infekce viry z čeledi Coronaviridae epidemiologie veterinární virologie MeSH
- lidé MeSH
- nemoci prasat epidemiologie virologie MeSH
- Picornaviridae genetika izolace a purifikace MeSH
- pikornavirové infekce epidemiologie veterinární virologie MeSH
- prasata MeSH
- rotavirové infekce epidemiologie veterinární virologie MeSH
- Rotavirus genetika izolace a purifikace MeSH
- Sus scrofa MeSH
- virové plášťové proteiny genetika MeSH
- zdroje nemoci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antigeny virové MeSH
- virové plášťové proteiny MeSH
- VP4 protein, Rotavirus MeSH Prohlížeč
- VP6 protein, Rotavirus MeSH Prohlížeč
- VP7 protein, Rotavirus MeSH Prohlížeč