Most cited article - PubMed ID 23911740
IL-4 polymorphisms, HRCT score and lung tissue markers in idiopathic pulmonary fibrosis
A genetic predisposition has been identified in 30% of idiopathic pulmonary fibrosis (IPF) cases. Although it is highly probable that the genotype affects the disease susceptibility and course in almost all patients, the specific genotype goes undetected. The aim of the present study was to explore the effects of variants of the genes encoding interleukin-4 (IL-4), mucin 5B (MUC5B), toll interacting protein (TOLLIP), surfactant protein A (SFPTA), transforming growth factor-β (TGF-β) and transporters associated with antigen processing (TAP1 and TAP2) on the course of IPF. A total of 50 patients with IPF were enrolled, and variants of these genes were assessed. Lung function at the time of diagnosis and after 6, 12 and 18 months, and the number of acute exacerbations and deaths in each observation period were measured. ANOVA was used to test the association between gene polymorphisms and the decrease in lung function. There was no significant effect of the gene polymorphisms on the outcomes of patients up to 6 months during the observation period. After 12 months, an effect of an IL-4 single nucleotide polymorphism (SNP) (rs 2070874) on patient outcomes was observed [relative risk (RR) for T allele: 5.6; 95% confidence interval (CI), 0.79-39.0; P=0.053]. The RR of progression in patients with the IL-4 SNP (rs 2243250) and the CT and TT genotypes was 4.3 (95% CI, 1.1-17.5; P=0.046). A total of 18 months after the diagnosis of IPF, an effect of the TOLLIP polymorphism on patient outcome was detected (rs 111521887; risk allele GC; RR: 7.2; 95% CI, 0.97-53.6; P=0.052). Thus, IL-4 and TOLLIP gene polymorphisms may represent disease course-modifying factors, but not drivers of IPF.
- Keywords
- gene variants, idiopathic pulmonary fibrosis, interleukin 4, toll interacting protein,
- Publication type
- Journal Article MeSH
Idiopathic pulmonary fibrosis (IPF) affects lung parenchyma with progressing fibrosis. In this study, we aimed to replicate MUC5B rs35705950 variants and determine new plausible candidate variants for IPF among four different European populations. We genotyped 26 IPF candidate loci in 165 IPF patients from four European countries, such as Czech Republic (n = 41), Germany (n = 33), Greece (n = 40), France (n = 51), and performed association study comparing observed variant distribution with that obtained in a genetically similar Czech healthy control population (n = 96) described in our earlier data report. A highly significant association for a promoter variant (rs35705950) of mucin encoding MUC5B gene was observed in all IPF populations, individually and combined [odds ratio (95% confidence interval); p-value as 5.23 (8.94-3.06); 1.80 × 10(-11)]. Another non-coding variant, rs7934606 in MUC2 was significant among German patients [2.85 (5.05-1.60); 4.03 × 10(-4)] and combined European IPF cases [2.18 (3.16-1.50); 3.73 × 10(-5)]. The network analysis for these variants indicated gene-gene and gene-phenotype interactions in IPF and lung biology. With replication of MUC5B rs35705950 previously reported in U.S. populations of European descent and indicating other plausible polymorphic variants relevant for IPF, we provide additional reference information for future extended functional and population studies aimed, ideally with inclusion of clinical parameters, at identification of IPF genetic markers.
- Keywords
- MUC2, MUC5B, association study, cytokines, idiopathic pulmonary fibrosis, network analysis, sequenom MassARRAY, single nucleotide polymorphism,
- Publication type
- Journal Article MeSH
- Keywords
- Czech normal population, MUC5B, association study, cytokines, idiopathic pulmonary fibrosis, sequenom MassARRAY, single nucleotide polymorphism, susceptibility,
- Publication type
- Journal Article MeSH
Sarcoidosis (SARC) and extrinsic allergic alveolitis (EAA) share certain markers, making a differential diagnosis difficult even with histopathological investigation. In lung tissue, proteinase-activated receptor-2 (PAR-2) is primarily investigated with regard to epithelial and inflammatory perspectives. Varying levels of certain chemokines can be a useful tool for distinguishing EAA and SARC. Thus, in the present study, differences in the levels of transforming growth factor (TGF)-β1, tumor necrosis factor (TNF)-α, interleukin-4 receptor (IL-4R) and PAR-2 in bronchoalveolar lavage fluid (BALF) were compared, using an ELISA method, between 14 patients with EAA and six patients with SARC. Statistically significant higher levels of IL-4R, PAR-2 and the PAR-2/TGF-β1 and PAR-2/TNF-α ratios were observed in EAA patients as compared with SARC patients. Furthermore, the ratios of TNF-α/total protein, TGF-β1/PAR-2 and TNF-α/PAR-2 were significantly lower in EAA patients than in SARC patients. The results indicated a higher detection of PAR-2 in EAA samples in association with TNF-α and TGF-β levels. As EAA and PAR-2 in parallel belong to the Th2-mediated pathway, the results significantly indicated an association between this receptor and etiology. In addition, the results indicated that SARC is predominantly a granulomatous inflammatory disease, thus, higher levels of TNF-α are observed. Therefore, the detection of PAR-2 and investigated chemokines in BALF may serve as a useful tool in the differential diagnosis between EAA and SARC.