Most cited article - PubMed ID 24105332
The healing of alkali-injured cornea is stimulated by a novel matrix regenerating agent (RGTA, CACICOL20): a biopolymer mimicking heparan sulfates reducing proteolytic, oxidative and nitrosative damage
Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown.
- MeSH
- Alkalies toxicity MeSH
- Ophthalmic Solutions therapeutic use MeSH
- Oxidative Stress * drug effects radiation effects MeSH
- Corneal Injuries drug therapy metabolism pathology MeSH
- Reactive Oxygen Species metabolism MeSH
- Cornea drug effects radiation effects MeSH
- Ultraviolet Rays MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Alkalies MeSH
- Ophthalmic Solutions MeSH
- Reactive Oxygen Species MeSH