Nejvíce citovaný článek - PubMed ID 24108124
FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells
Formation of RAD51 filaments on single-stranded DNA is an essential event during homologous recombination, which is required for homology search, strand exchange and protection of replication forks. Formation of nucleoprotein filaments (NF) is required for development and genomic stability, and its failure is associated with developmental abnormalities and tumorigenesis. Here we describe the structure of the human RAD51 NFs and of its Walker box mutants using electron microscopy. Wild-type RAD51 filaments adopt an 'open' conformation when compared to a 'closed' structure formed by mutants, reflecting alterations in helical pitch. The kinetics of formation/disassembly of RAD51 filaments show rapid and high ssDNA coverage via low cooperativity binding of RAD51 units along the DNA. Subsequently, a series of isomerization or dissociation events mediated by nucleotide binding state creates intrinsically dynamic RAD51 NFs. Our findings highlight important a mechanistic divergence among recombinases from different organisms, in line with the diversity of biological mechanisms of HR initiation and quality control. These data reveal unexpected intrinsic dynamic properties of the RAD51 filament during assembly/disassembly, which may be important for the proper control of homologous recombination.
- MeSH
- adeninnukleotidy metabolismus MeSH
- adenosintrifosfát metabolismus MeSH
- biologická evoluce MeSH
- elektronová kryomikroskopie MeSH
- jednovláknová DNA metabolismus MeSH
- kinetika MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace MeSH
- rekombinasa Rad51 genetika metabolismus ultrastruktura MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adeninnukleotidy MeSH
- adenosintrifosfát MeSH
- jednovláknová DNA MeSH
- RAD51 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH
Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.
- MeSH
- aminokyselinové motivy MeSH
- DNA vazebné proteiny chemie metabolismus fyziologie MeSH
- DNA-polymerasa III antagonisté a inhibitory MeSH
- DNA biosyntéza MeSH
- HEK293 buňky MeSH
- lidé MeSH
- rekombinační oprava DNA * MeSH
- ubikvitinligasy fyziologie MeSH
- ultrafialové záření MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- DNA-polymerasa III MeSH
- DNA MeSH
- PARPBP protein, human MeSH Prohlížeč
- RAD18 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
Most mitotic homologous recombination (HR) events proceed via a synthesis-dependent strand annealing mechanism to avoid crossing over, which may give rise to chromosomal rearrangements and loss of heterozygosity. The molecular mechanisms controlling HR sub-pathway choice are poorly understood. Here, we show that human RECQ5, a DNA helicase that can disrupt RAD51 nucleoprotein filaments, promotes formation of non-crossover products during DNA double-strand break-induced HR and counteracts the inhibitory effect of RAD51 on RAD52-mediated DNA annealing in vitro and in vivo. Moreover, we demonstrate that RECQ5 deficiency is associated with an increased occupancy of RAD51 at a double-strand break site, and it also causes an elevation of sister chromatid exchanges on inactivation of the Holliday junction dissolution pathway or on induction of a high load of DNA damage in the cell. Collectively, our findings suggest that RECQ5 acts during the post-synaptic phase of synthesis-dependent strand annealing to prevent formation of aberrant RAD51 filaments on the extended invading strand, thus limiting its channeling into potentially hazardous crossover pathway of HR.
- MeSH
- buněčné linie MeSH
- DNA opravný a rekombinační protein Rad52 metabolismus MeSH
- DNA metabolismus MeSH
- dvouřetězcové zlomy DNA * MeSH
- helikasy RecQ metabolismus MeSH
- jednovláknová DNA metabolismus MeSH
- lidé MeSH
- rekombinační oprava DNA * MeSH
- rekombinasa Rad51 metabolismus MeSH
- výměna sesterských chromatid MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA opravný a rekombinační protein Rad52 MeSH
- DNA MeSH
- helikasy RecQ MeSH
- jednovláknová DNA MeSH
- RECQL5 protein, human MeSH Prohlížeč
- rekombinasa Rad51 MeSH