Most cited article - PubMed ID 24125695
Characterization of pbt genes conferring increased Pb2+ and Cd2+ tolerance upon Achromobacter xylosoxidans A8
Although stinging nettle (Urtica dioica) has been shown to reduce HM (heavy metal) content in soil, its wider phytoremediation potential has been neglected. Urtica dioica was cultivated in soils contaminated with HMs or polychlorinated biphenyls (PCBs). After four months, up to 33% of the less chlorinated biphenyls and 8% of HMs (Zn, Pb, Cd) had been removed. Bacteria were isolated from the plant tissue, with the endophytic bacteria Bacillus shackletonii and Streptomyces badius shown to have the most significant effect. These bacteria demonstrated not only benefits for plant growth, but also extreme tolerance to As, Zn and Pb. Despite these results, the native phytoremediation potential of nettles could be improved by biotechnologies. Transient expression was used to investigate the functionality of the most common constitutive promoter, CaMV 35S in Urtica dioica. This showed the expression of the CUP and bphC transgenes. Collectively, our findings suggest that remediation by stinging nettle could have a much wider range of applications than previously thought.
- MeSH
- Biodegradation, Environmental * MeSH
- Genetic Engineering methods MeSH
- Plants, Genetically Modified genetics metabolism MeSH
- Cadmium metabolism MeSH
- Soil Pollutants metabolism MeSH
- Lead metabolism MeSH
- Polychlorinated Biphenyls analysis metabolism MeSH
- Promoter Regions, Genetic * genetics MeSH
- Soil chemistry MeSH
- Gene Expression Regulation, Plant genetics MeSH
- Metals, Heavy analysis metabolism MeSH
- Urtica dioica genetics metabolism MeSH
- Zinc metabolism MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cadmium MeSH
- Soil Pollutants MeSH
- Lead MeSH
- Polychlorinated Biphenyls MeSH
- Soil MeSH
- Metals, Heavy MeSH
- Zinc MeSH