Most cited article - PubMed ID 24259415
Enantiopurity analysis of new types of acyclic nucleoside phosphonates by capillary electrophoresis with cyclodextrins as chiral selectors
Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF) are key virulence factors with adenylate cyclase (AC) activity that substantially contribute to the pathogenesis of whooping cough and anthrax, respectively. There is an urgent need to develop potent and selective inhibitors of bacterial ACs with prospects for the development of potential antibacterial therapeutics and to study their molecular interactions with the target enzymes. Novel fluorescent 5-chloroanthraniloyl-substituted acyclic nucleoside phosphonates (Cl-ANT-ANPs) were designed and synthesized in the form of their diphosphates (Cl-ANT-ANPpp) as competitive ACT and EF inhibitors with sub-micromolar potency (IC50 values: 11-622 nm). Fluorescence experiments indicated that Cl-ANT-ANPpp analogues bind to the ACT active site, and docking studies suggested that the Cl-ANT group interacts with Phe306 and Leu60. Interestingly, the increase in direct fluorescence with Cl-ANT-ANPpp having an ester linker was strictly calmodulin (CaM)-dependent, whereas Cl-ANT-ANPpp analogues with an amide linker, upon binding to ACT, increased the fluorescence even in the absence of CaM. Such a dependence of binding on structural modification could be exploited in the future design of potent inhibitors of bacterial ACs. Furthermore, one Cl-ANT-ANP in the form of a bisamidate prodrug was able to inhibit B. pertussis ACT activity in macrophage cells with IC50 =12 μm.
- Keywords
- adenylate cyclase, anthrax, antibacterial agents, fluorescence, whooping cough,
- MeSH
- Adenylyl Cyclases metabolism MeSH
- Bordetella pertussis enzymology MeSH
- Fluorescent Dyes chemical synthesis chemistry pharmacology MeSH
- Adenylyl Cyclase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Macrophages drug effects MeSH
- Molecular Structure MeSH
- Mice MeSH
- Nucleosides chemical synthesis chemistry pharmacology MeSH
- Organophosphonates chemical synthesis chemistry pharmacology MeSH
- Drug Design * MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenylyl Cyclases MeSH
- Fluorescent Dyes MeSH
- Adenylyl Cyclase Inhibitors MeSH
- Nucleosides MeSH
- Organophosphonates MeSH