Nejvíce citovaný článek - PubMed ID 24357837
Zinc finger 644 (Zfp644 in mouse, ZNF644 in human) gene is a transcription factor whose mutation S672G is considered a potential genetic factor of inherited high myopia. ZNF644 interacts with G9a/GLP complex, which functions as a H3K9 methyltransferase to silence transcription. In this study, we generated mouse models to unravel the mechanisms leading to symptoms associated with high myopia. Employing TALEN technology, two mice mutants were generated, either with the disease-carrying mutation (Zfp644 S673G ) or with a truncated form of Zfp644 (Zfp644 Δ8 ). Eye morphology and visual functions were analysed in both mutants, revealing a significant difference in a vitreous chamber depth and lens diameter, however the physiological function of retina was preserved as found under the high-myopia conditions. Our findings prove that ZNF644/Zfp644 is involved in the development of high-myopia, indicating that mutations such as, Zfp644 S673G and Zfp644 Δ8 are causative for changes connected with the disease. The developed models represent a valuable tool to investigate the molecular basis of myopia pathogenesis and its potential treatment.
- Klíčová slova
- Eye, Genetics, Mouse model, Myopia, Vision, Zinc finger 644,
- Publikační typ
- časopisecké články MeSH
The growth in the prevalence of myopia leads to the growth of socioeconomic stress in society. It is important to detect any potential risk factors leading to myopia onset and progression. Among the potential risk factors, the lack of natural daylight exposure and the lack of the physical activity together with excess of near-work activities in children are the most prevalent. In the study, the axial length growth depending on the season and the type of behaviour was measured. The assessment was performed in 12-year-old children, 398 eyes of whom were included and measured during the winter and summer period. The children were categorized by the amount of time spent on near-work, physical, and outdoor activity. Results. Statistically significantly higher (p < 0.0001) axial length growth was observed during the winter period. Statistically significantly (p < 0.0001) more frequently, the eyeball growth has been proved during the winter season. According to the way of spending leisure time, no statistically significant difference was reported within the individual subgroups in the development of the eyeball length during the observed period. However, statistically significant differences were ascertained in the eyeball initial length within various groups. Conclusion. The lack of daylight exposure may lead to myopia progression.
- Publikační typ
- časopisecké články MeSH