Nejvíce citovaný článek - PubMed ID 24666645
Alternative intrapopulation life-history strategies and their trade-offs in an African annual fish
Dietary alteration is one of the most universally effective aging interventions, making its standardization a fundamental need for model organisms in aging. In this dietetic study we address the current lack of standardized formulated diet for turquoise killifish Nothobranchius furzeri - a promising model organism. We first demonstrated that N. furzeri can be fully weaned at the onset of puberty onto a commercially available pelleted diet as the sole nutrition when kept in social tanks. We then compared nine somatic and six reproductive parameters between fish fed a typical laboratory diet - frozen chironomid larvae (bloodworms) and fish weaned from bloodworms to BioMar pellets. Both dietary groups had comparable somatic and reproductive performance. There was no difference between diet groups in adult body size, specific growth rate, condition or extent of hepatocellular vacuolation. Fish fed a pelleted diet had higher juvenile body mass and more visceral fat. Pellet-fed males had lower liver mass and possessed a lipid type of hepatocellular vacuolation instead of the prevailing glycogen-like vacuolation in the bloodworm-fed group. No considerable effect was found on reproductive parameters. The negligible differences between dietary groups and good acceptance of pellets indicate their suitability as a useful starting point for the development of standardized diet for Nothobranchius furzeri.
- MeSH
- chov zvířat normy MeSH
- dieta normy veterinární MeSH
- Fundulidae fyziologie MeSH
- krmivo pro zvířata normy MeSH
- modely u zvířat * MeSH
- složení těla MeSH
- stárnutí * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The turquoise killifish, Nothobranchius furzeri, is a promising vertebrate model in ageing research and an emerging model organism in genomics, regenerative medicine, developmental biology and ecotoxicology. Its lifestyle is adapted to the ephemeral nature of shallow pools on the African savannah. Its rapid and short active life commences when rains fill the pool: fish hatch, grow rapidly and mature in as few as two weeks, and then reproduce daily until the pool dries out. Its embryos then become inactive, encased in the dry sediment and protected from the harsh environment until the rains return. This invertebrate-like life cycle (short active phase and long developmental arrest) combined with a vertebrate body plan provide the ideal attributes for a laboratory animal.
- Klíčová slova
- Ageing, Natural History, Nothobranchius furzeri, Senescence, The Natural History of Model Organisms, Turquoise killifish, ecology, evolutionary biology,
- MeSH
- Cyprinodontiformes genetika růst a vývoj fyziologie MeSH
- dieta MeSH
- ekosystém * MeSH
- embryo nesavčí fyziologie MeSH
- modely u zvířat MeSH
- pigmentace MeSH
- sexuální chování zvířat MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antipredator strategies increase the chances of survival of prey species but are subject to trade-offs and always come at a cost, one specific category being the "missed opportunity." Some animals that can modulate the timing of life-cycle events can also desynchronize this timing with the occurrence of a predator. In an unpredictable environment, such a modification may result in a mismatch with prevailing conditions, consequently leading to reproductive failure. In eastern Africa, temporary pools existing only during the rainy season are inhabited by annual fish of the genus Nothobranchius. We examined (i) the capability of multiple Nothobranchius populations and species to cease hatching when exposed to chemical cues from native fish predators and adult conspecifics and (ii) the ability of N. furzeri to modulate their growth rate in the presence of a gape-limited fish predator. As the tested Nothobranchius spp. originate from regions with extreme environmental fluctuations where the cost of a missed opportunity can be serious, we predicted an inability to cease hatching as well as lack of growth acceleration as both the predator's gape limitation and the environment select for the same adaptation. Our results showed no biologically relevant influence of kairomone on hatching and no influence on growth rate. This suggests that, in an unpredictable environment, the costs of a missed opportunity are substantial enough to prevent the evolution of some antipredator defense strategies.
- Klíčová slova
- Clarias, diapause, embryo, olfactory cue, tilapia,
- Publikační typ
- časopisecké články MeSH
The evolution of life history is shaped by life expectancy. Life-history traits coevolve, and optimal states for particular traits are constrained by trade-offs with other life-history traits. Life histories contrast among species, but may also diverge intraspecifically, at the level of populations. We studied the evolution of female reproductive allocation strategy, using natural populations of two sympatric species of African annual fishes, Nothobranchius furzeri and Nothobranchius orthonotus. These species inhabit pools in the Mozambican savanna that are formed in the rainy season and persist for only 2-10 months. Using 207 female N. furzeri from 11 populations and 243 female N. orthonotus from 14 populations, we tested the effects of genetic background (intraspecific lineage) and life expectancy (position on the aridity gradient determining maximum duration of their temporary habitat) on female fecundity traits. First, we found that variation in female body mass was small within populations, but varied considerably among populations. Second, we found that fecundity was largely defined by female body mass and that females spawned most of their eggs in the morning. Third, we found that the trade-off between egg size and egg number varied among lineages of N. furzeri and this outcome has been confirmed by data from two separate years. Overall, we demonstrate that local conditions were important determinants for Nothobranchius growth and fecundity and that eggs size in arid region was less limited by female fecundity than in humid region.
- Klíčová slova
- Annual killifish, egg size, interpopulation variation, intrapopulation variability, life expectancy, reproductive allocation,
- Publikační typ
- časopisecké články MeSH
Turquoise killifish, Nothobranchius furzeri, have an intrinsically short life span, with a median life span of <6 months and a maximum (90%) life span of 9 months. This short life span, which is unique among vertebrates, evolved naturally and has resulted in N. furzeri becoming a widely used laboratory model species in aging research and other disciplines. Here, we describe a protocol for the maintenance and breeding of the species under laboratory conditions. We provide details for egg incubation, hatching, everyday care of juvenile and adult fish, breeding and treatment of most common diseases. Emphasis is given to the fact that the requirements of N. furzeri substantially differ from those of other fish model taxa; N. furzeri live brief lives and in nature undergo nonaquatic embryo development, with consequences for their laboratory culture.
- MeSH
- chov metody MeSH
- Cyprinodontiformes genetika fyziologie MeSH
- dlouhověkost MeSH
- laboratoře * MeSH
- nemoci ryb terapie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH