Most cited article - PubMed ID 24797386
Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)--overview of their taxonomy, life cycle, host specificity and pathogenicity
Laboratory colonies of phlebotomine sand flies are necessary for experimental study of their biology, behaviour and mutual relations with disease agents and for testing new methods of vector control. They are indispensable in genetic studies and controlled observations on the physiology and behaviour of sand flies, neglected subjects of high priority. Colonies are of particular value for screening insecticides. Colonized sand flies are used as live vector models in a diverse array of research projects, including xenodiagnosis, that are directed toward control of leishmaniasis and other sand fly-associated diseases. Historically, labour-intensive maintenance and low productivity have limited their usefulness for research, especially for species that do not adapt well to laboratory conditions. However, with growing interest in leishmaniasis research, rearing techniques have been developed and refined, and sand fly colonies have become more common, enabling many significant breakthroughs. Today, there are at least 90 colonies representing 21 distinct phlebotomine sand fly species in 35 laboratories in 18 countries worldwide. The materials and methods used by various sand fly workers differ, dictated by the availability of resources, cost or manpower constraints rather than choice. This paper is not intended as a comprehensive review but rather a discussion of methods and techniques most commonly used by researchers to initiate, establish and maintain sand fly colonies, with emphasis on the methods proven to be most effective for the species the authors have colonized. Topics discussed include collecting sand flies for colony stock, colony initiation, maintenance and mass-rearing procedures, and control of sand fly pathogens in colonies.
Les colonies de laboratoire de phlébotomes sont nécessaires pour une étude expérimentale de leur biologie, leur comportement et leurs relations mutuelles avec des agents pathogènes et pour tester de nouvelles méthodes de lutte antivectorielle. Elles sont indispensables dans les études génétiques et les observations contrôlées sur la physiologie et le comportement des phlébotomes, sujets négligés de haute priorité. Les colonies ont une valeur particulière pour le criblage des insecticides. Les phlébotomes en élevage sont utilisés comme modèles de vecteurs vivants dans un éventail varié de projets de recherche, y compris le xénodiagnostic, qui visent le contrôle de la leishmaniose et d'autres maladies associées aux phlébotomes. Historiquement, la maintenance à forte intensité de main-d'œuvre et la faible productivité ont limité leur utilité pour la recherche, en particulier pour les espèces qui ne s'adaptent pas bien aux conditions de laboratoire. Mais, avec un intérêt croissant pour la recherche sur la leishmaniose, les techniques d'élevage ont été développées et affinées, et les colonies de phlébotomes sont devenues plus fréquentes, permettant de nombreuses percées significatives. Aujourd'hui, il y a au moins 90 colonies représentant 21 espèces distinctes de phlébotomes dans 35 laboratoires et 18 pays à travers le monde. Les matériaux et les méthodes utilisés par divers chercheurs sur les phlébotomes diffèrent, dictés par la disponibilité des ressources et les contraintes de coûts ou de main-d'œuvre plutôt que par le choix. Cet article n'est pas destiné à être un examen complet, mais plutôt une discussion sur les méthodes et les techniques les plus utilisées par les chercheurs pour initier, établir et maintenir les colonies de phlébotomes, en mettant l'accent sur les méthodes démontrées les plus efficaces pour les espèces que les auteurs ont établies en colonies. Les sujets abordés comprennent la collecte de phlébotomes pour les stocks de colonies, l'initiation des colonies, les procédures de maintenance et d'élevage et le contrôle des agents pathogènes des phlébotomes dans les colonies.
- MeSH
- Housing, Animal classification standards MeSH
- Transportation methods MeSH
- Insect Vectors classification growth & development parasitology physiology MeSH
- Oviposition MeSH
- Rabbits MeSH
- Cricetinae MeSH
- Chickens MeSH
- Guinea Pigs MeSH
- Mice MeSH
- Psychodidae classification growth & development parasitology physiology MeSH
- Animals MeSH
- Check Tag
- Rabbits MeSH
- Cricetinae MeSH
- Guinea Pigs MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- India MeSH
BACKGROUND: In mosquitoes, it has previously been shown that rearing conditions of immature stages have an effect on the vector competence of adults. Here, we studied the impact of different larval rearing temperatures (27 °C versus 32 °C) on the sand fly Phlebotomus sergenti Parrot, 1917 and its susceptibility to two parasites: Leishmania tropica Wright, 1903, a dixenous trypanosomatid transmissible from sand flies to humans, and Psychodiella sergenti Lantova, Volf & Votypka, 2010, a monoxenous sand fly gregarine. RESULTS: Increased rearing temperature (32 °C) affected the larval developmental times and size of P. sergenti adults but had no effect on the susceptibility of P. sergenti to L. tropica. No differences were found in Leishmania infection rates or in the intensities of Leishmania infection. Interestingly, increased larval rearing temperature significantly suppressed the development of gregarines. All 117 control sand flies tested were infected with Ps. sergenti, and the mean number of gamonts per individual was 29.5. In contrast, only three of 120 sand flies maintained at 32 °C were infected and the mean number of gamonts per individual was just 0.04. CONCLUSIONS: We demonstrated that the increased rearing temperature of P. sergenti larvae had no impact on the development of L. tropica in adult sand flies but had a profound effect on the gregarine Ps. sergenti. We suggest that increasing the larval rearing temperature by 5 °C is a simple and effective way to clean sand fly colonies infected by gregarines.
- Keywords
- Effect of temperature, Gregarines, Leishmania tropica, Phlebotomus sergenti, Psychodiella sergenti, Vector competence,
- MeSH
- Apicomplexa physiology MeSH
- Insect Control MeSH
- Insect Vectors parasitology MeSH
- Host-Parasite Interactions MeSH
- Larva physiology MeSH
- Leishmania tropica physiology MeSH
- Phlebotomus growth & development parasitology MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH