An increase of larval rearing temperature does not affect the susceptibility of Phlebotomus sergenti to Leishmania tropica but effectively eliminates the gregarine Psychodiella sergenti

. 2016 Oct 18 ; 9 (1) : 553. [epub] 20161018

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27756429
Odkazy

PubMed 27756429
PubMed Central PMC5070077
DOI 10.1186/s13071-016-1841-6
PII: 10.1186/s13071-016-1841-6
Knihovny.cz E-zdroje

BACKGROUND: In mosquitoes, it has previously been shown that rearing conditions of immature stages have an effect on the vector competence of adults. Here, we studied the impact of different larval rearing temperatures (27 °C versus 32 °C) on the sand fly Phlebotomus sergenti Parrot, 1917 and its susceptibility to two parasites: Leishmania tropica Wright, 1903, a dixenous trypanosomatid transmissible from sand flies to humans, and Psychodiella sergenti Lantova, Volf & Votypka, 2010, a monoxenous sand fly gregarine. RESULTS: Increased rearing temperature (32 °C) affected the larval developmental times and size of P. sergenti adults but had no effect on the susceptibility of P. sergenti to L. tropica. No differences were found in Leishmania infection rates or in the intensities of Leishmania infection. Interestingly, increased larval rearing temperature significantly suppressed the development of gregarines. All 117 control sand flies tested were infected with Ps. sergenti, and the mean number of gamonts per individual was 29.5. In contrast, only three of 120 sand flies maintained at 32 °C were infected and the mean number of gamonts per individual was just 0.04. CONCLUSIONS: We demonstrated that the increased rearing temperature of P. sergenti larvae had no impact on the development of L. tropica in adult sand flies but had a profound effect on the gregarine Ps. sergenti. We suggest that increasing the larval rearing temperature by 5 °C is a simple and effective way to clean sand fly colonies infected by gregarines.

Zobrazit více v PubMed

Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17:279–289. doi: 10.1016/S0738-081X(99)00046-2. PubMed DOI

Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI

Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:1–9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI

Lantova L, Volf P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina) - Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect Genet Evol. 2014;28:616–27. PubMed

Lantova L, Ghosh K, Svobodova M, Braig HR, Rowton E, Weina P, et al. The life cycle and host specificity of Psychodiella sergenti n. sp. and Ps. tobbi n. sp. (Protozoa: Apicomplexa) in sand flies Phlebotomus sergenti and Ph. tobbi (Diptera: Psychodidae) J Invertebr Pathol. 2010;105:182–189. doi: 10.1016/j.jip.2010.07.001. PubMed DOI

Lantova L, Volf P. The development of Psychodiella sergenti (Apicomplexa: Eugregarinorida) in Phlebotomus sergenti (Diptera: Psychodidae) Parasitology. 2012;139:726–734. doi: 10.1017/S0031182011002411. PubMed DOI PMC

Jancarova M, Hlavacova J, Volf P. The development of Leishmania tropica in sand flies (Diptera: Psychodidae): A comparison of colonies differing in geographical origin and a gregarine coinfection. J Med Entomol. 2015;52:1378–80. PubMed PMC

Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:593. doi: 10.1186/s13071-014-0593-4. PubMed DOI PMC

Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis. 2010;10:241–247. doi: 10.1089/vbz.2009.0035. PubMed DOI PMC

Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI

Sumanochitrapon W, Strickman D, Sithiprasasna R, Kittayapong P, Innis BL. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. Am J Trop Med Hyg. 1998;58:283–286. PubMed

Belen A, Alten B, Aytekin AM. Altitudinal variation in morphometric and molecular characteristics of Phlebotomus papatasi populations. Med Vet Entomol. 2004;18:343–350. doi: 10.1111/j.0269-283X.2004.00514.x. PubMed DOI

Dodson BL, Kramer LD, Rasgon JL. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit Vectors. 2012;5:1–6. doi: 10.1186/1756-3305-5-199. PubMed DOI PMC

Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors. 2013;6:1–10. doi: 10.1186/1756-3305-6-345. PubMed DOI PMC

Alto BW, Lounibos LP, Mores CN, Reiskind MH. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc R Soc London B. 2008;275:463–471. doi: 10.1098/rspb.2007.1497. PubMed DOI PMC

Kay BH, Edman JD, Fanning ID, Mottram P. Larval diet and the vector competence of Culex annulirostris (Diptera: Culicidae) for Murray Valley encephalitis virus. J Med Entomol. 1989;26:487–488. doi: 10.1093/jmedent/26.5.487. PubMed DOI

Reisen WK, Hardy JL, Presser S. Effects of water quality on the vector competence of Culex tarsalis (Diptera: Culicidae) for western equine encephalomyelitis (Togaviridae) and St. Louis encephalitis (Flaviviridae) Viruses. J Med Entomol. 1997;34:631–643. doi: 10.1093/jmedent/34.6.631. PubMed DOI

Lantova L, Svobodova M, Volf P. Effects of Psychodiella sergenti (Apicomplexa, Eugregarinorida) on its natural host Phlebotomus sergenti (Diptera, Psychodidae) J Med Entomol. 2011;48:985–990. doi: 10.1603/ME11018. PubMed DOI

Poinar GO, Jr, Thomas GM. Bacteria. In: Thomas GM, editor. Laboratory guide to insect pathogens and parasites. New York: Plenum Press; 1984. pp. 79–104.

Benkova I, Volf P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae) J Med Entomol. 2007;44:150–154. doi: 10.1603/0022-2585(2007)44[150:EOTOMO]2.0.CO;2. PubMed DOI

Kolman JA, Clopton ER, Clopton TD. Effects of developmental temperature on gametocysts and oocysts of two species of gregarines Blabericola migrator and Blabericola cubensis (Apicomplexa: Eugregarinida: Blabericolidae) parasitizing blaberid cockroaches (Dictyoptera: Blaberidae) J Parasitol. 2015;101:651–657. doi: 10.1645/14-673. PubMed DOI

Adamo SA, Lovett MM. Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol. 2011;214:1997–2004. doi: 10.1242/jeb.056531. PubMed DOI

Catalan TP, Wozniak A, Niemeyer HM, Kalergis AM, Bozinovic F. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. J Insect Physiol. 2012;58:310–317. doi: 10.1016/j.jinsphys.2011.10.001. PubMed DOI

Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, et al. Complex effects of temperature on mosquito immune function. Proc R Soc London B. 2012;279:3357–66. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...