An increase of larval rearing temperature does not affect the susceptibility of Phlebotomus sergenti to Leishmania tropica but effectively eliminates the gregarine Psychodiella sergenti
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27756429
PubMed Central
PMC5070077
DOI
10.1186/s13071-016-1841-6
PII: 10.1186/s13071-016-1841-6
Knihovny.cz E-zdroje
- Klíčová slova
- Effect of temperature, Gregarines, Leishmania tropica, Phlebotomus sergenti, Psychodiella sergenti, Vector competence,
- MeSH
- Apicomplexa fyziologie MeSH
- dezinsekce MeSH
- hmyz - vektory parazitologie MeSH
- interakce hostitele a parazita MeSH
- larva fyziologie MeSH
- Leishmania tropica fyziologie MeSH
- Phlebotomus růst a vývoj parazitologie MeSH
- teplota MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: In mosquitoes, it has previously been shown that rearing conditions of immature stages have an effect on the vector competence of adults. Here, we studied the impact of different larval rearing temperatures (27 °C versus 32 °C) on the sand fly Phlebotomus sergenti Parrot, 1917 and its susceptibility to two parasites: Leishmania tropica Wright, 1903, a dixenous trypanosomatid transmissible from sand flies to humans, and Psychodiella sergenti Lantova, Volf & Votypka, 2010, a monoxenous sand fly gregarine. RESULTS: Increased rearing temperature (32 °C) affected the larval developmental times and size of P. sergenti adults but had no effect on the susceptibility of P. sergenti to L. tropica. No differences were found in Leishmania infection rates or in the intensities of Leishmania infection. Interestingly, increased larval rearing temperature significantly suppressed the development of gregarines. All 117 control sand flies tested were infected with Ps. sergenti, and the mean number of gamonts per individual was 29.5. In contrast, only three of 120 sand flies maintained at 32 °C were infected and the mean number of gamonts per individual was just 0.04. CONCLUSIONS: We demonstrated that the increased rearing temperature of P. sergenti larvae had no impact on the development of L. tropica in adult sand flies but had a profound effect on the gregarine Ps. sergenti. We suggest that increasing the larval rearing temperature by 5 °C is a simple and effective way to clean sand fly colonies infected by gregarines.
Zobrazit více v PubMed
Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17:279–289. doi: 10.1016/S0738-081X(99)00046-2. PubMed DOI
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27:123–147. doi: 10.1111/j.1365-2915.2012.01034.x. PubMed DOI
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36:1–9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Lantova L, Volf P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina) - Overview of their taxonomy, life cycle, host specificity and pathogenicity. Infect Genet Evol. 2014;28:616–27. PubMed
Lantova L, Ghosh K, Svobodova M, Braig HR, Rowton E, Weina P, et al. The life cycle and host specificity of Psychodiella sergenti n. sp. and Ps. tobbi n. sp. (Protozoa: Apicomplexa) in sand flies Phlebotomus sergenti and Ph. tobbi (Diptera: Psychodidae) J Invertebr Pathol. 2010;105:182–189. doi: 10.1016/j.jip.2010.07.001. PubMed DOI
Lantova L, Volf P. The development of Psychodiella sergenti (Apicomplexa: Eugregarinorida) in Phlebotomus sergenti (Diptera: Psychodidae) Parasitology. 2012;139:726–734. doi: 10.1017/S0031182011002411. PubMed DOI PMC
Jancarova M, Hlavacova J, Volf P. The development of Leishmania tropica in sand flies (Diptera: Psychodidae): A comparison of colonies differing in geographical origin and a gregarine coinfection. J Med Entomol. 2015;52:1378–80. PubMed PMC
Moller-Jacobs LL, Murdock CC, Thomas MB. Capacity of mosquitoes to transmit malaria depends on larval environment. Parasit Vectors. 2014;7:593. doi: 10.1186/s13071-014-0593-4. PubMed DOI PMC
Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis. 2010;10:241–247. doi: 10.1089/vbz.2009.0035. PubMed DOI PMC
Myskova J, Votypka J, Volf P. Leishmania in sand flies: comparison of quantitative polymerase chain reaction with other techniques to determine the intensity of infection. J Med Entomol. 2008;45:133–138. doi: 10.1093/jmedent/45.1.133. PubMed DOI
Sumanochitrapon W, Strickman D, Sithiprasasna R, Kittayapong P, Innis BL. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. Am J Trop Med Hyg. 1998;58:283–286. PubMed
Belen A, Alten B, Aytekin AM. Altitudinal variation in morphometric and molecular characteristics of Phlebotomus papatasi populations. Med Vet Entomol. 2004;18:343–350. doi: 10.1111/j.0269-283X.2004.00514.x. PubMed DOI
Dodson BL, Kramer LD, Rasgon JL. Effects of larval rearing temperature on immature development and West Nile virus vector competence of Culex tarsalis. Parasit Vectors. 2012;5:1–6. doi: 10.1186/1756-3305-5-199. PubMed DOI PMC
Takken W, Smallegange RC, Vigneau AJ, Johnston V, Brown M, Mordue-Luntz AJ, et al. Larval nutrition differentially affects adult fitness and Plasmodium development in the malaria vectors Anopheles gambiae and Anopheles stephensi. Parasit Vectors. 2013;6:1–10. doi: 10.1186/1756-3305-6-345. PubMed DOI PMC
Alto BW, Lounibos LP, Mores CN, Reiskind MH. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc R Soc London B. 2008;275:463–471. doi: 10.1098/rspb.2007.1497. PubMed DOI PMC
Kay BH, Edman JD, Fanning ID, Mottram P. Larval diet and the vector competence of Culex annulirostris (Diptera: Culicidae) for Murray Valley encephalitis virus. J Med Entomol. 1989;26:487–488. doi: 10.1093/jmedent/26.5.487. PubMed DOI
Reisen WK, Hardy JL, Presser S. Effects of water quality on the vector competence of Culex tarsalis (Diptera: Culicidae) for western equine encephalomyelitis (Togaviridae) and St. Louis encephalitis (Flaviviridae) Viruses. J Med Entomol. 1997;34:631–643. doi: 10.1093/jmedent/34.6.631. PubMed DOI
Lantova L, Svobodova M, Volf P. Effects of Psychodiella sergenti (Apicomplexa, Eugregarinorida) on its natural host Phlebotomus sergenti (Diptera, Psychodidae) J Med Entomol. 2011;48:985–990. doi: 10.1603/ME11018. PubMed DOI
Poinar GO, Jr, Thomas GM. Bacteria. In: Thomas GM, editor. Laboratory guide to insect pathogens and parasites. New York: Plenum Press; 1984. pp. 79–104.
Benkova I, Volf P. Effect of temperature on metabolism of Phlebotomus papatasi (Diptera: Psychodidae) J Med Entomol. 2007;44:150–154. doi: 10.1603/0022-2585(2007)44[150:EOTOMO]2.0.CO;2. PubMed DOI
Kolman JA, Clopton ER, Clopton TD. Effects of developmental temperature on gametocysts and oocysts of two species of gregarines Blabericola migrator and Blabericola cubensis (Apicomplexa: Eugregarinida: Blabericolidae) parasitizing blaberid cockroaches (Dictyoptera: Blaberidae) J Parasitol. 2015;101:651–657. doi: 10.1645/14-673. PubMed DOI
Adamo SA, Lovett MM. Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol. 2011;214:1997–2004. doi: 10.1242/jeb.056531. PubMed DOI
Catalan TP, Wozniak A, Niemeyer HM, Kalergis AM, Bozinovic F. Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. J Insect Physiol. 2012;58:310–317. doi: 10.1016/j.jinsphys.2011.10.001. PubMed DOI
Murdock CC, Paaijmans KP, Bell AS, King JG, Hillyer JF, Read AF, et al. Complex effects of temperature on mosquito immune function. Proc R Soc London B. 2012;279:3357–66. PubMed PMC
Laboratory colonization and mass rearing of phlebotomine sand flies (Diptera, Psychodidae)