Most cited article - PubMed ID 25067956
A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival
To individualise breast cancer (BC) prevention, markers to follow a person's changing environment and health extending beyond static genetic risk scores are required. Here, we analysed cervical and breast DNA methylation (n = 1848) and single nucleotide polymorphisms (n = 1442) and demonstrate that a linear combination of methylation levels at 104 BC-associated methylation quantitative trait loci (mQTL) CpGs, termed the WID™-qtBC index, can identify women with breast cancer in hormone-sensitive tissues (AUC = 0.71 [95% CI: 0.65-0.77] in cervical samples). Women in the highest combined risk group (high polygenic risk score and WID™-qtBC) had a 9.6-fold increased risk for BC [95% CI: 4.7-21] compared to the low-risk group and tended to present at more advanced stages. Importantly, the WID™-qtBC is influenced by non-genetic BC risk factors, including age and body mass index, and can be modified by a preventive pharmacological intervention, indicating an interaction between genome and environment recorded at the level of the epigenome. Our findings indicate that methylation levels at mQTLs in relevant surrogate tissues could enable integration of heritable and non-heritable factors for improved disease risk stratification.
- Publication type
- Journal Article MeSH
Genetic and non-genetic factors contribute to breast cancer development. An epigenome-based signature capturing these components in easily accessible samples could identify women at risk. Here, we analyse the DNA methylome in 2,818 cervical, 357 and 227 matched buccal and blood samples respectively, and 42 breast tissue samples from women with and without breast cancer. Utilising cervical liquid-based cytology samples, we develop the DNA methylation-based Women's risk IDentification for Breast Cancer index (WID-BC-index) that identifies women with breast cancer with an AUROC (Area Under the Receiver Operator Characteristic) of 0.84 (95% CI: 0.80-0.88) and 0.81 (95% CI: 0.76-0.86) in internal and external validation sets, respectively. CpGs at progesterone receptor binding sites hypomethylated in normal breast tissue of women with breast cancer or in BRCA mutation carriers are also hypomethylated in cervical samples of women with poor prognostic breast cancer. Our data indicate that a systemic epigenetic programming defect is highly prevalent in women who develop breast cancer. Further studies validating the WID-BC-index may enable clinical implementation for monitoring breast cancer risk.
- MeSH
- Cervix Uteri cytology metabolism MeSH
- CpG Islands MeSH
- Epigenome MeSH
- Epigenomics methods MeSH
- Epithelial Cells metabolism MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Mutation MeSH
- Biomarkers, Tumor genetics metabolism MeSH
- Breast Neoplasms genetics metabolism MeSH
- Prognosis MeSH
- Breast cytology metabolism MeSH
- ROC Curve MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers, Tumor MeSH
The incidence of cancer is continuing to rise and risk-tailored early diagnostic and/or primary prevention strategies are urgently required. The ideal risk-predictive test should: integrate the effects of both genetic and nongenetic factors and aim to capture these effects using an approach that is both biologically stable and technically reproducible; derive a score from easily accessible biological samples that acts as a surrogate for the organ in question; and enable the effectiveness of risk-reducing measures to be monitored. Substantial evidence has accumulated suggesting that the epigenome and, in particular, DNA methylation-based tests meet all of these requirements. However, the development and implementation of DNA methylation-based risk-prediction tests poses considerable challenges. In particular, the cell type specificity of DNA methylation and the extensive cellular heterogeneity of the easily accessible surrogate cells that might contain information relevant to less accessible tissues necessitates the use of novel methods in order to account for these confounding issues. Furthermore, the engagement of the scientific community with health-care professionals, policymakers and the public is required in order to identify and address the organizational, ethical, legal, social and economic challenges associated with the routine use of epigenetic testing.
- MeSH
- Epigenomics trends MeSH
- Genome, Human genetics MeSH
- Risk Assessment * MeSH
- Humans MeSH
- DNA Methylation genetics MeSH
- Neoplasms epidemiology genetics MeSH
- Risk Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH