Most cited article - PubMed ID 25372492
Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the defence activity of Radix lagotis (Lymnaeidae) Haemocytes
Human cercarial dermatitis is a parasitic disease that causes an allergic reaction in the skin (swimmer's itch) as a consequence of contact with cercariae of bird schistosomes present in water, mainly of the genus Trichobilharzia Skrjabin et Zakarow, 1920. The main objective of the study was to confirm the presence of the zoonotic disease agent following reports of human infections in recreational water in Slovakia. We identified two species of freshwater snails at Košice Lake, Radix auricularia (Linnaeus, 1758) and Physa acuta (Draparnaud, 1805). Trematode infections were observed only in R. auricularia. Of the 62 snails collected, 11 (17.7%) were infected with 5 different species of larval stages of trematodes. The blood fluke Trichobilharzia franki was found in 2 (3.2%) of the examined snails. The present record provides the first evidence that T. franki from the pulmonate snail R. auricularia represents a source of human cercarial dermatitis in recreational water in Slovakia. Our finding complements the easternmost records of both swimmer's itch and the confirmed occurrence of a bird schistosome in a waterbody in Europe. The present work suggests that the health risks associated with trichobilharziasis need to be further studied by detailed monitoring of the occurrence of the major causative agent of human cercarial dermatitis, T. franki.
- Keywords
- Bird schistosomes, Cercariae, Cercarial dermatitis, Trematodes, Trichobilharzia, Zoonosis,
- MeSH
- Dermatitis epidemiology parasitology MeSH
- Disease Outbreaks MeSH
- Snails parasitology MeSH
- Trematode Infections epidemiology parasitology transmission MeSH
- Lakes parasitology MeSH
- Humans MeSH
- Skin Diseases, Parasitic parasitology transmission MeSH
- Schistosomatidae classification genetics isolation & purification MeSH
- Schistosomiasis epidemiology parasitology transmission MeSH
- Zoonoses epidemiology parasitology transmission MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Slovakia epidemiology MeSH
In freshwater ecosystems, snails can significantly influence the competition between primary producers through grazing of periphyton. This activity can potentially be modified by trematodes, a large group of parasites which mostly use molluscs as the first intermediate host. Available studies, however, show contradictory effects of trematodes on snail periphyton grazing. Here, we used four different freshwater snail-trematode systems to test whether a general pattern can be detected for the impact of trematode infections on snail periphyton grazing. In our experimental systems, mass-specific periphyton grazing rates of infected snails were higher, lower, or similar to rates of non-infected conspecifics, suggesting that no general pattern exists. The variation across studied snail-trematode systems may result from differences on how the parasite uses the resources of the snail and thus affects their energy budget. Trematode infections can significantly alter the grazing rate of snails, where, depending on the system, the mass-specific grazing rate can double or halve. This underlines both, the high ecological relevance of trematodes and the need for comprehensive studies at the species level to allow an integration of these parasite-host interactions into aquatic food web concepts.
- Keywords
- Freshwater snails, Grazing rates, Host–parasite interaction, Periphyton, Trematodes,
- MeSH
- Ecology MeSH
- Ecosystem MeSH
- Snails parasitology MeSH
- Trematode Infections parasitology MeSH
- Host-Parasite Interactions physiology MeSH
- Periphyton * MeSH
- Food Chain MeSH
- Eating physiology MeSH
- Fresh Water parasitology MeSH
- Trematoda isolation & purification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH