Nejvíce citovaný článek - PubMed ID 25778402
The Radical S-Adenosyl-L-methionine Enzyme QhpD Catalyzes Sequential Formation of Intra-protein Sulfur-to-Methylene Carbon Thioether Bonds
PqqE is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe-S clusters. To characterize the Fe-S clusters in PqqE from Methylobacterium extorquens AM1, Cys residues conserved in the N-terminal signature motif (CX 3 CX 2C) and the C-terminal seven-cysteine motif (CX 9-15 GX 4 CX n CX 2 CX 5 CX 3 CX n C; n = an unspecified number) were individually or simultaneously mutated into Ser. Biochemical and Mössbauer spectral analyses of as-purified and reconstituted mutant enzymes confirmed the presence of three Fe-S clusters in PqqE: one [4Fe-4S]2+ cluster at the N-terminal region that is essential for the reductive homolytic cleavage of SAM into methionine and 5'-deoxyadenosyl radical, and one each [4Fe-4S]2+ and [2Fe-2S]2+ auxiliary clusters in the C-terminal SPASM domain, which are assumed to serve for electron transfer between the buried active site and the protein surface. The presence of [2Fe-2S]2+ cluster is a novel finding for radical SAM enzyme belonging to the SPASM subfamily. Moreover, we found uncommon ligation of the auxiliary [4Fe-4S]2+ cluster with sulfur atoms of three Cys residues and a carboxyl oxygen atom of a conserved Asp residue.
- Klíčová slova
- Mössbauer spectroscopy, [4Fe–4S] cluster, pyrroloquinoline quinone, radical SAM enzyme,
- Publikační typ
- časopisecké články MeSH