Characterization of auxiliary iron-sulfur clusters in a radical S-adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1

. 2017 Dec ; 7 (12) : 1864-1879. [epub] 20171018

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29226074

PqqE is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe-S clusters. To characterize the Fe-S clusters in PqqE from Methylobacterium extorquens AM1, Cys residues conserved in the N-terminal signature motif (CX 3 CX 2C) and the C-terminal seven-cysteine motif (CX 9-15 GX 4 CX n CX 2 CX 5 CX 3 CX n C; n = an unspecified number) were individually or simultaneously mutated into Ser. Biochemical and Mössbauer spectral analyses of as-purified and reconstituted mutant enzymes confirmed the presence of three Fe-S clusters in PqqE: one [4Fe-4S]2+ cluster at the N-terminal region that is essential for the reductive homolytic cleavage of SAM into methionine and 5'-deoxyadenosyl radical, and one each [4Fe-4S]2+ and [2Fe-2S]2+ auxiliary clusters in the C-terminal SPASM domain, which are assumed to serve for electron transfer between the buried active site and the protein surface. The presence of [2Fe-2S]2+ cluster is a novel finding for radical SAM enzyme belonging to the SPASM subfamily. Moreover, we found uncommon ligation of the auxiliary [4Fe-4S]2+ cluster with sulfur atoms of three Cys residues and a carboxyl oxygen atom of a conserved Asp residue.

Zobrazit více v PubMed

Barr I, Latham JA, Iavarone AT, Chantarojsiri T, Hwang JD and Klinman JP (2016) Demonstration that the radical S‐adenosylmethionine (SAM) enzyme PqqE catalyzes de novo carbon‐carbon cross‐linking within a peptide substrate PqqA in the presence of the peptide chaperone PqqD. J Biol Chem 291, 8877–8884. PubMed PMC

Latham JA, Iavarone AT, Barr I, Juthani PV and Klinman JP (2015) PqqD is a novel peptide chaperone that forms a ternary complex with the radical S‐adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J Biol Chem 290, 12908–12918. PubMed PMC

Wang J, Woldring RP, Román‐Meléndez GD, McClain AM, Alzua BR and Marsh ENG (2014) Recent advances in radical SAM enzymology: new structures and mechanisms. ACS Chem Biol 9, 1929–1938. PubMed PMC

Haft DH and Basu MK (2011) Biological systems discovery in silico: radical S‐adenosylmethionine protein families and their target peptides for posttranslational modification. J Bacteriol 193, 2745–2755. PubMed PMC

Lanz ND and Booker SJ (2015) Auxiliary iron‐sulfur cofactors in radical SAM enzymes. Biochim Biophys Acta 1853, 1316–1334. PubMed

Goldman PJ, Grove TL, Sites LA, McLaughlin MI, Booker SJ and Drennan CL (2013) X‐ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc Natl Acad Sci USA 110, 8519–8524. PubMed PMC

Grell TA, Goldman PJ and Drennan CL (2015) SPASM and twitch domains in S‐adenosylmethionine (SAM) radical enzymes. J Biol Chem 290, 3964–3971. PubMed PMC

Saichana N, Tanizawa K, Pechoušek J, Novák P, Yakushi T, Toyama H and Frébortová J (2016) PqqE from Methylobacterium extorquens AM1: a radical S‐adenosyl‐L‐methionine enzyme with an unusual tolerance to oxygen. J Biochem 159, 87–99. PubMed PMC

Mulder DW, Ortillo DO, Gardenghi DJ, Naumov AV, Ruebush SS, Szilagyi RK, Huynh B‐H, Broderick JB and Peters JW (2009) Activation of HydAEFG requires a preformed [4Fe–4S] cluster. Biochemistry 48, 6240–6248. PubMed

Perche‐Letuvée P, Kathirvelu V, Berggren G, Clemancey M, Latour J‐M, Maurel V, Douki T, Armengaud J, Mulliez E, Fontecave M et al (2012) 4‐Demethylwyosine synthase from Pyrococcus abyssi is a radical‐S‐adenosyl‐L‐methionine enzyme with an additional [4Fe–4S]+2 cluster that interacts with the pyruvate co‐substrate. J Biol Chem 287, 41174–41185. PubMed PMC

Roach PL (2011) Radicals from S‐adenosylmethionine and their application to biosynthesis. Curr Opin Chem Biol 15, 267–275. PubMed

Broderick JB, Duffus BR, Duschene KS and Shepard EM (2014) Radical S‐adenosylmethionine enzymes. Chem Rev 114, 4229–4317. PubMed PMC

Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L et al (2014) SWISS‐MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42 (Web Server issue), W252–W258. PubMed PMC

Hänzelmann P and Schindelin H (2006) Binding of 5′‐GTP to the C‐terminal FeS cluster of the radical S‐adenosylmethionine enzyme MoaA provides insights into its mechanism. Proc Natl Acad Sci USA 103, 6829–6834. PubMed PMC

Dinis P, Suess DL, Fox SJ, Harmer JE, Driesener RC, De La Paz L, Swartz JR, Essex JW, Britt RD and Roach PL (2015) X‐ray crystallographic and EPR spectroscopic analysis of HydG, a maturase in [FeFe]‐hydrogenase H‐cluster assembly. Proc Natl Acad Sci USA 112, 1362–1367. PubMed PMC

Berkovitch F, Nicolet Y, Wan JT, Jarrett JT and Drennan CL (2004) Crystal structure of biotin synthase, an S‐adenosylmethionine‐dependent radical enzyme. Science 303, 76–79. PubMed PMC

Nicolet Y and Drennan CL (2004) AdoMet radical proteins–from structure to evolution–alignment of divergent protein sequences reveals strong secondary structure element conservation. Nucleic Acids Res 32, 4015–4025. PubMed PMC

Dowling DP, Vey JL, Croft AK and Drennan CL (2012) Structural diversity in the AdoMet radical enzyme superfamily. Biochim Biophys Acta 1824, 1178–1195. PubMed PMC

Benjdia A, Guillot A, Lefranc B, Vaudry H, Leprince J and Berteau O (2016) Thioether bond formation by SPASM domain radical SAM enzymes: Cα H‐atom abstraction in subtilosin A biosynthesis. Chem Commun (Camb) 52, 6249–6252. PubMed

Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR and Johnson MK (2000) IscU as a scaffold for iron‐sulfur cluster biosynthesis: sequential assembly of [2Fe–2S] and [4Fe–4S] clusters in IscU. Biochemistry 39, 7856–7862. PubMed

Hänzelmann P, Hernández HL, Menzel C, García‐Serres R, Huynh BH, Johnson MK, Mendel RR and Schindelin H (2004) Characterization of MOCS1A, an oxygen‐sensitive iron‐sulfur protein involved in human molybdenum cofactor biosynthesis. J Biol Chem 279, 34721–34732. PubMed

Dailey HA, Finnegan MG and Johnson MK (1994) Human ferrochelatase is an iron‐sulfur protein. Biochemistry 33, 403–407. PubMed

Pandelia M‐E, Lanz ND, Booker SJ and Krebs C (2015) Mössbauer spectroscopy of Fe/S proteins. Biochim Biophys Acta 1853, 1395–1405. PubMed

Gruner I, Fradrich C, Bottger LH, Trautwein AX, Jahn D and Hartig E (2011) Aspartate 141 is the fourth ligand of the oxygen‐sensing [4Fe–4S]2+ cluster of Bacillus subtilis transcriptional regulator Fnr. J Biol Chem 286, 2017–2021. PubMed PMC

Akiva E, Brown S, Almonacid DE, Barber AE, Custer AF, Hicks MA, Huang CC, Lauck F, Mashiyama ST, Meng EC et al (2014) The Structure–function linkage database. Nucleic Acids Res 42, D521–D530. PubMed PMC

Haft DH (2011) Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. BMC Genom 12, 21. PubMed PMC

Grove TL, Lee K‐H, St. Clair J, Krebs C and Booker SJ (2008) In vitro characterization of AtsB, a radical SAM formylglycine‐generating enzyme that contains three [4Fe–4S] clusters. Biochemistry 47, 7523–7538. PubMed PMC

Nakai T, Ito H, Kobayashi K, Takahashi Y, Hori H, Tsubaki M, Tanizawa K and Okajima T (2015) The Radical S‐adenosyl‐L‐methionine enzyme QhpD catalyzes sequential formation of intra‐protein sulfur‐to‐methylene carbon thioether bonds. J Biol Chem 290, 11144–11166. PubMed PMC

Wecksler SR, Stoll S, Tran H, Magnusson OT, Wu S‐P, King D, Britt RD and Klinman JP (2009) Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S‐adenosyl‐L‐methionine enzyme. Biochemistry 48, 10151–10161. PubMed PMC

Lim A and Gräsland A (2000) Electron paramagnetic resonance evidence for a novel interconversion of [3Fe–4S]+ and [4Fe–4S]+ clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro. J Biol Chem 275, 12367–12373. PubMed

Krebs C, Broderick WE, Henshaw TF, Broderick JB and Huynh BH (2002) Coordination of adenosylmethionine to a unique iron site of the [4Fe–4S] cluster of pyruvate formate lyase‐activating enzyme: a Mössbauer spectroscopic study. J Am Chem Soc 124, 912–913. PubMed

Mason JR and Cammack R (1992) The electron‐transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46, 277–305. PubMed

Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE et al (2007) MitoNEET is a uniquely folded 2Fe–2S outer mitochondrial membrane protein stabilized by pioglitazone. Proc Natl Acad Sci USA 104, 14342–14347. PubMed PMC

Hou XW, Liu RJ, Ross S, Smart EJ, Zhu HN and Gong WM (2007) Crystallographic studies of human MitoNEET. J Biol Chem 282, 33242–33246. PubMed

Lin JZ, Zhou T, Ye KQ and Wang JF (2007) Crystal structure of human mitoNEET reveals distinct groups of iron‐sulfur proteins. Proc Natl Acad Sci USA 104, 14640–14645. PubMed PMC

Fleischhacker AS, Stubna A, Hsueh KL, Guo Y, Teter SJ, Rose JC, Brunold TC, Markley JL, Münck E and Kiley PJ (2012) Characterization of the [2Fe–2S] cluster of Escherichia coli transcription factor IscR. Biochemistry 51, 4453–4462. PubMed PMC

Coghlan VM and Vickery LE (1991) Site‐specific mutations in human ferredoxin that affect binding to ferredoxin reductase and cytochrome P450scc. J Biol Chem 266, 18606–18612. PubMed

Moulis JM, Davasse V, Golinelli MP, Meyer J and Quinkal I (1996) The coordination sphere of iron‐sulfur clusters: lessons from site‐directed mutagenesis experiments. J Biol Inorg Chem 1, 2–14.

Lanz ND and Booker SJ (2012) Identification and function of auxiliary iron‐sulfur clusters in radical SAM enzymes. Biochim Biophys Acta 1824, 1196–1212. PubMed

Bak DW and Elliott SJ (2014) Alternative FeS cluster ligands: tuning redox potentials and chemistry. Curr Opin Chem Biol 19, 50–58. PubMed

Yu L, Blaser M, Andrei PI, Pierik AJ and Selmer T (2006) 4‐Hydroxyphenylacetate decarboxylases: properties of a novel subclass of glycyl radical enzyme systems. Biochemistry 45, 9584–9592. PubMed

Conover RC, Kowal AT, Fu WG, Park JB, Aono S, Adams MW and Johnson MK (1990) Spectroscopic characterization of the novel iron‐sulfur cluster in Pyrococcus furiosus ferredoxin. J Biol Chem 265, 8533–8541. PubMed

Busch JL, Breton JL, Bartlett BM, Armstrong FA, James R and Thomson AJ (1997) [3Fe–4S] ↔ [4Fe–4S] cluster interconversion in Desulfovibrio africanus ferredoxin III: properties of an Asp14→Cys mutant. Biochem J 323, 95–102. PubMed PMC

Muraki N, Nomata J, Ebata K, Mizoguchi T, Shiba T, Tamiaki H, Kurisu G and Fujita Y (2010) X‐ray crystal structure of the light‐independent protochlorophyllide reductase. Nature 465, 110–114. PubMed

Kondo T, Nomata J, Fujita Y and Itoh S (2011) EPR study of 1Asp–3Cys ligated 4Fe–4S iron‐sulfur cluster in NB‐protein (BchN–BchB) of a dark‐operative protochlorophyllide reductase complex. FEBS Lett 585, 214–218. PubMed

Emsley P, Lohkamp B, Scott WG and Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66, 486–501. PubMed PMC

Fisher CL and Pei GK (1997) Modification of a PCR‐based site‐directed mutagenesis method. Biotechniques 23, 570–571, 574. PubMed

Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein‐dye binding. Anal Biochem 72, 248–254. PubMed

Fish WW (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol 158, 357–364. PubMed

Beinert H (1983) Semi‐micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron‐sulfur proteins. Anal Biochem 131, 373–378. PubMed

Flühe L, Knappe TA, Gattner MJ, Schäfer A, Burghaus O, Linne U and Marahiel MA (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat Chem Biol 8, 350–357. PubMed

Klencsár Z, Kuzmann E and Vértes A (1996) User‐friendly software for Mössbauer spectrum analysis. J Radioanal Nucl Chem 210, 105–118.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...