PqqE from Methylobacterium extorquens AM1: a radical S-adenosyl-l-methionine enzyme with an unusual tolerance to oxygen
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26188050
PubMed Central
PMC4882640
DOI
10.1093/jb/mvv073
PII: mvv073
Knihovny.cz E-zdroje
- Klíčová slova
- Methylobacterium extorquens AM1, PQQ, PqqE, radical SAM enzyme,
- MeSH
- bakteriální proteiny chemie metabolismus MeSH
- endopeptidasy chemie metabolismus MeSH
- kofaktor PQQ biosyntéza MeSH
- kyslík chemie MeSH
- Methylobacterium extorquens enzymologie MeSH
- molekulární sekvence - údaje MeSH
- S-adenosylmethionin chemie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- spektroskopie Mossbauerova MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- endopeptidasy MeSH
- kofaktor PQQ MeSH
- kyslík MeSH
- PqqE protein, Methylobacterium extorquens MeSH Prohlížeč
- S-adenosylmethionin MeSH
Methylobacterium extorquens AM1 is an aerobic facultative methylotroph known to secrete pyrroloquinoline quinone (PQQ), a cofactor of a number of bacterial dehydrogenases, into the culture medium. To elucidate the molecular mechanism of PQQ biosynthesis, we are focusing on PqqE which is believed to be the enzyme catalysing the first reaction of the pathway. PqqE belongs to the radical S-adenosyl-l-methionine (SAM) superfamily, in which most, if not all, enzymes are very sensitive to dissolved oxygen and rapidly inactivated under aerobic conditions. We here report that PqqE from M. extorquens AM1 is markedly oxygen-tolerant; it was efficiently expressed in Escherichia coli cells grown aerobically and affinity-purified to near homogeneity. The purified and reconstituted PqqE contained multiple (likely three) iron-sulphur clusters and showed the reductive SAM cleavage activity that was ascribed to the consensus [4Fe-4S](2+) cluster bound at the N-terminus region. Mössbauer spectrometric analyses of the as-purified and reconstituted enzymes revealed the presence of [4Fe-4S](2+) and [2Fe-2S](2+) clusters as the major forms with the former being predominant in the reconstituted enzyme. PqqE from M.extorquens AM1 may serve as a convenient tool for studying the molecular mechanism of PQQ biosynthesis, avoiding the necessity of establishing strictly anaerobic conditions.
Zobrazit více v PubMed
Duine J.A. (1991) Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinone. Eur. J. Biochem. 200, 271–284 PubMed
Adachi O., Ano Y., Toyama H., Matsushita K. (2007) Biooxidation with PQQ- and FAD-dependent dehydrogenases. in Modern Biooxidation (Schmid R.D., Urlacher V.B. eds.) pp. 1–41. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
Goosen N., Horsman H.P., Huinen R.G., de Groot A., van de Putte P. (1989) Genes involved in the biosynthesis of PQQ from Acinetobacter calcoaceticus. Antonie Van Leeuwenhoek 56, 85–91 PubMed
Biville F., Turlin E., Gasser F. (1989) Cloning and genetic analysis of six pyrroloquinoline quinone biosynthesis genes in Methylobacterium organophilum DSM 760. Microbiology 135, 2917–2929 PubMed
Meulenberg J.J., Sellink E., Riegman N.H., Postma P.W. (1992) Nucleotide sequence and structure of the Klebsiella pneumoniae pqq operon. Mol. Gen. Genet. 232, 284–294 PubMed
Schnider U., Keel C., Voisard C., Défago G., Haas D. (1995) Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: mutational inactivation of the genes results in overproduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61, 3856–3864 PubMed PMC
Ramette A., Frapolli M., Saux M.F.-L., Gruffaz C., Meyer J.-M., Défago G., Sutra L., Moënne-Loccoz Y. (2011) Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 34, 180–188 PubMed
Toyama H., Chistoserdova L., Lidstrom M.E. (1997) Sequence analysis of pqq genes required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1 and the purification of a biosynthetic intermediate. Microbiology 143, 595–602 PubMed
Kim C.H., Han S.H., Kim K.Y., Cho B.H., Kim Y.H., Koo B.S., Kim Y.C. (2003) Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate–solubilizing bacterium Enterobacter intermedium. Curr. Microbiol. 47, 457–461 PubMed
Pavan M.E., Franco R.J., Rodriguez J.M., Gadaleta P., Abbott S.L., Janda J.M., Zorzópulos J. (2005) Phylogenetic relationships of the genus Kluyvera: transfer of Enterobacter intermedius Izard et al. 1980 to the genus Kluyvera as Kluyvera intermedia comb. nov. and reclassification of Kluyvera cochleae as a later synonym of K. intermedia. Int. J. Syst. Evol. Microbiol. 55, 437–442 PubMed
Hölscher T., Görisch H. (2006) Knockout and overexpression of pyrroloquinoline quinone biosynthetic genes in Gluconobacter oxydans 621H. J. Bacteriol. 188, 7668–7676 PubMed PMC
Shen Y.-Q., Bonnot F., Imsand E.M., RoseFigura J.M., Sjölander K., Klinman J.P. (2012) Distribution and properties of the genes encoding the biosynthesis of the bacterial cofactor, pyrroloquinoline quinone. Biochemistry 51, 2265–2275 PubMed PMC
Klinman J.P., Bonnot F. (2014) Intrigues and intricacies of the biosynthetic pathways for the enzymatic quinocofactors: PQQ, TTQ, CTQ, TPQ, and LTQ. Chem. Rev. 114, 4343–4365 PubMed PMC
Velterop J.S., Sellink E., Meulenberg J.J., David S., Bulder I., Postma P.W. (1995) Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J. Bacteriol. 177, 5088–5098 PubMed PMC
Puehringer S., Metlitzky M., Schwarzenbacher R. (2008) The pyrroloquinoline quinone biosynthesis pathway revisited: a structural approach. BMC Biochem. 9, 8. PubMed PMC
Magnusson O.T., Toyama H., Saeki M., Rojas A., Reed J.C., Liddington R.C., Klinman J.P., Schwarzenbacher R. (2004) Quinone biogenesis: structure and mechanism of PqqC, the final catalyst in the production of pyrroloquinoline quinone. Proc. Natl. Acad. Sci. U.S.A. 101, 7913–7918 PubMed PMC
Magnusson O.T., Toyama H., Saeki M., Schwarzenbacher R., Klinman J.P. (2004) The structure of a biosynthetic intermediate of pyrroloquinoline quinone (PQQ) and elucidation of the final step of PQQ biosynthesis. J. Am. Chem. Soc. 126, 5342–5343 PubMed
Houck D.R., Hanners J.L., Unkefer C.J. (1991) Biosynthesis of pyrroloquinoline quinone. 2. Biosynthetic assembly from glutamate and tyrosine. J. Am. Chem. Soc. 113, 3162–3166
Toyama H., Lidstrom M. E. (1998) pqqA is not required for biosynthesis of pyrroloquinoline quinone in Methylobacterium extorquens AM1. Microbiology 144, 183–191 PubMed
Vuilleumier S., Chistoserdova L., Lee M.-C., Bringel F., Lajus A., Zhou Y., Gourion B., Barbe V., Chang J., Cruveiller S., Dossat C., Gillett W., Gruffaz C., Haugen E., Hourcade E., Levy R., Mangenot S., Muller E., Nadalig T., Pagni M., Penny C., Peyraud R., Robinson D.G., Roche D., Rouy Z., Saenampechek C., Salvignol G., Vallenet D., Wu Z., Marx C.J., Vorholt J.A., Olson M.V., Kaul R., Weissenbach J., Médigue C., Lidstrom M.E. (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4, e5584. PubMed PMC
Wecksler S.R., Stoll S., Tran H., Magnusson O.T., Wu S.-P., King D., Britt R.D., Klinman J.P. (2009) Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme. Biochemistry 48, 10151–10161 PubMed PMC
Latham J.A., Iavarone A.T., Barr I., Juthani P.V., Klinman J.P. (2015) PqqD is a novel peptide chaperone that forms a ternary complex with the radical S-adenosylmethionine protein PqqE in the pyrroloquinoline quinone biosynthetic pathway. J. Biol. Chem., 290, 12908–12918 PubMed PMC
Okubo Y., Skovran E., Guo X., Sivam D., Lidstrom M.E. (2007) Implementation of microarrays for Methylobacterium extorquens AM1. Omics 11, 325–340 PubMed
Fish W.W. (1988) Rapid colorimetric micromethod for the quantitation of complexed iron in biological samples. Methods Enzymol. 158, 357–364 PubMed
Marmur J. (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. Mol. Biol. 3, 208–218
Sambrook J., Russell D.W. (2001) Molecular Cloning: a Laboratory Manual. 3rd edn Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Flühe L., Knappe T.A., Gattner M.J., Schäfer A., Burghaus O., Linne U., Marahiel M.A. (2012) The radical SAM enzyme AlbA catalyzes thioether bond formation in subtilosin A. Nat. Chem. Biol. 8, 350–357 PubMed
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 PubMed
Lanz N.D., Grove T.L., Gogonea C.B., Lee K.-H., Krebs C., Booker S.J. (2012) RlmN and AtsB as models for the overproduction and characterization of radical SAM proteins. Methods Enzymol. 516, 125–152 PubMed
Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A. (2005) Protein identification and analysis tools on the ExPASy server. in The Proteomics Protocols Handbook, Humana Press . (Walker J.M. ed.) pp. 571–607. Humana Press, New York
Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 PubMed
Beinert H. (1983) Semi-micro methods for analysis of labile sulfide and of labile sulfide plus sulfane sulfur in unusually stable iron-sulfur proteins. Anal. Biochem. 131, 373–378 PubMed
Pechoušek J., Jančík D., Frydrych J., Navařík J., Novák P. (2012) Setup of Mössbauer spectrometers at RCPTM. in Mössbauer Spectroscopy in Materials Science. (Tucek J., Machala L. eds.). AIP Conference Proceedings , Vol. 1489 pp. 186–193. Czech Republic, Olomouc
Klencsár Z., Kuzmann E., Vértes A. (1996) User-friendly software for Mössbauer spectrum analysis. J. Radioanal. Nucl. Chem. 210, 105–118
Akiva E., Brown S., Almonacid D.E., Barber A.E., Custer A.F., Hicks M.A., Huang C.C., Lauck F., Mashiyama S.T., Meng E.C., Mischel D., Morris J.H., Ojha S., Schnoes A.M., Stryke D., Yunes J.M., Ferrin T.E., Holliday G.L., Babbitt P.C. (2014) The structure-function linkage database. Nucleic Acids Res. 42, D521–D530 PubMed PMC
Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 PubMed PMC
Edgar R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 PubMed PMC
Robert X., Gouet P. (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 PubMed PMC
Tegel H., Tourle S., Ottosson J., Persson A. (2010) Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta (DE3). Protein Expr. Purif. 69, 159–167 PubMed
Zheng L., Cash V.L., Flint D.H., Dean D.R. (1998) Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273, 13264–13272 PubMed
Agar J.N., Krebs C., Frazzon J., Huynh B.H., Dean D.R., Johnson M.K. (2000) IscU as a scaffold for iron-sulfur cluster biosynthesis: sequential assembly of [2Fe-2S] and [4Fe-4S] clusters in IscU. Biochemistry 39, 7856–7862 PubMed
Hänzelmann P., Hernández H.L., Menzel C., García-Serres R., Huynh B.H., Johnson M.K., Mendel R.R., Schindelin H. (2004) Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis. J. Biol. Chem. 279, 34721–34732 PubMed
Frey P.A., Hegeman A.D., Ruzicka F.J. (2008) The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 PubMed
Roach P. L. (2011) Radicals from S-adenosylmethionine and their application to biosynthesis. Curr. Opin. Chem. Biol. 15, 267–275 PubMed
Booker S.J. (2012) Radical SAM enzymes and radical enzymology. Biochim. Biophys. Acta 1824, 1151–1153 PubMed
Broderick J.B., Duffus B.R., Duschene K.S., Shepard E.M. (2014) Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 PubMed PMC
Wang J., Woldring R.P., Román-Meléndez G.D., McClain A.M., Alzua B.R., Marsh E.N.G. (2014) Recent advances in radical SAM enzymology: new structures and mechanisms. ACS Chem. Biol. 9, 1929–1938 PubMed PMC
Pandelia M.-E., Lanz N.D., Booker S.J., Krebs C. (2015) Mössbauer spectroscopy of Fe/S proteins. Biochim. Biophys. Acta 1853, 1395–1405 PubMed
Perche-Letuvée P., Kathirvelu V., Berggren G., Clemancey M., Latour J.-M., Maurel V., Douki T., Armengaud J., Mulliez E., Fontecave M., Garcia-Serres R., Gambarelli S., Atta M. (2012) 4-Demethylwyosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S]+2 cluster that interacts with the pyruvate co-substrate. J. Biol. Chem. 287, 41174–41185 PubMed PMC
Chandramouli K., Unciuleac M.-C., Naik S., Dean D.R., Huynh B.H., Johnson M.K. (2007) Formation and properties of [4Fe-4S] clusters on the IscU scaffold protein. Biochemistry 46, 6804–6811 PubMed
Mulder D.W., Ortillo D.O., Gardenghi D.J., Naumov A.V., Ruebush S.S., Szilagyi R.K., Huynh B.-H., Broderick J.B., Peters J.W. (2009) Activation of HydAΔEFG requires a preformed [4Fe-4S] cluster. Biochemistry 48, 6240–6248 PubMed
Murad E., Schwertmann U. (1980) The Mössbauer spectrum of ferrihydrite and its relations to those of other iron oxide. Am. Mineral. 65, 1044–1049
Duin E.C., Lafferty M.E., Crouse B.R., Allen R.M., Sanyal I., Flint D.H., Johnson M.K. (1997) [2Fe-2S] to [4Fe-4S] cluster conversion in Escherichia coli biotin synthase. Biochemistry 36, 11811–11820 PubMed
Broderick J.B., Duderstadt R.E., Fernandez D.C., Wojtuszewski K., Henshaw T.F., Johnson M.K. (1997) Pyruvate formate-lyase activating enzyme is an iron−sulfur protein. J. Am. Chem. Soc. 119, 7396–7397
Ollagnier S., Meier C., Mulliez E., Gaillard J., Schuenemann V., Trautwein A.X., Mattioli T., Lutz M., Fontecave M. (1999) Assembly of 2Fe-2S and 4Fe-4S clusters in the anaerobic ribonucleotide reductase from Escherichia coli. J. Am. Chem. Soc. 121, 6344–6350
Pierrel F., Hernandez H.L., Johnson M.K., Fontecave M., Atta M. (2003) MiaB protein from Thermotoga maritima. Characterization of an extremely thermophilic tRNA-methylthiotransferase. J. Biol. Chem. 278, 29515–29524 PubMed
Haft D.H., Basu M.K. (2011) Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 PubMed PMC
Haft D.H. (2011) Bioinformatic evidence for a widely distributed, ribosomally produced electron carrier precursor, its maturation proteins, and its nicotinoprotein redox partners. BMC Genomics 12, 21. PubMed PMC
Benjdia A., Subramanian S., Leprince J., Vaudry H., Johnson M.K., Berteau O. (2010) Anaerobic sulfatase-maturating enzyme: a mechanistic link with glycyl radical-activating enzymes? FEBS J. 277, 1906–1920 PubMed PMC
Grove T.L., Lee K.-H., St Clair J., Krebs C., Booker S.J. (2008) In vitro characterization of AtsB, a radical SAM formylglycine-generating enzyme that contains three [4Fe-4S] clusters. Biochemistry 47, 7523–7538 PubMed PMC
Goldman P.J., Grove T.L., Sites L.A., McLaughlin M.I., Booker S.J., Drennan C.L. (2013) X–ray structure of an AdoMet radical activase reveals an anaerobic solution for formylglycine posttranslational modification. Proc. Natl. Acad. Sci. U.S.A. 110, 8519–8524 PubMed PMC
Khoroshilova N., Popescu C., Münck E., Beinert H., Kiley P.J. (1997) Iron-sulfur cluster disassembly in the FNR protein of Escherichia coli by O2: [4Fe-4S] to [2Fe-2S] conversion with loss of biological activity. Proc. Natl. Acad. Sci. U.S.A. 94, 6087–6092 PubMed PMC
Crack J.C., den Hengst C.D., Jakimowicz P., Subramanian S., Johnson M.K., Buttner M.J., Thomson A.J., Le Brun N.E. (2009) Characterization of [4Fe-4S]-containing and cluster-free forms of Streptomyces WhiD. Biochemistry 48, 12252–12264 PubMed PMC
Tilley G.J., Camba R., Burgess B.K., Armstrong F.A. (2001) Influence of electrochemical properties in determining the sensitivity of [4Fe-4S] clusters in proteins to oxidative damage. Biochem. J. 360, 717–726 PubMed PMC
Hsueh K.-L., Yu L.-K., Chen Y.-H., Cheng Y.-H., Hsieh Y.-C., Ke S.-C., Hung K.-W., Chen C.-J., Huang T.-H. (2013) FeoC from Klebsiella pneumoniae contains a [4Fe-4S] cluster. J. Bacteriol. 195, 4726–4734 PubMed PMC
Benning M.M., Meyer T.E., Rayment I., Holden H.M. (1994) Molecular structure of the oxidized high-potential iron-sulfur protein isolated from Ectothiorhodospira vacuolata. Biochemistry 33, 2476–2483 PubMed
Agarwal A., Li D., Cowan J.A. (1995) Role of aromatic residues in stabilization of the [Fe4S4] cluster in high-potential iron proteins (HiPIPs): physical characterization and stability studies of Tyr-19 mutants of Chromatium vinosum HiPIP. Proc. Natl. Acad. Sci. U.S.A. 92, 9440–9444 PubMed PMC
Bruska M.K., Stiebritz M.T., Reiher M. (2013) Analysis of differences in oxygen sensitivity of Fe-S clusters. Dalton Trans. 42, 8729–8735 PubMed