Most cited article - PubMed ID 25814871
Observation of the diphoton decay of the Higgs boson and measurement of its properties
A search for exotic decays of the Higgs boson (H) with a mass of 125GeV to a pair of light pseudoscalars a1 is performed in final states where one pseudoscalar decays to two b quarks and the other to a pair of muons or τ leptons. A data sample of proton-proton collisions at s=13TeV corresponding to an integrated luminosity of 138fb-1 recorded with the CMS detector is analyzed. No statistically significant excess is observed over the standard model backgrounds. Upper limits are set at 95% confidence level (CL) on the Higgs boson branching fraction to μμbb and to ττbb, via a pair of a1s. The limits depend on the pseudoscalar mass ma1 and are observed to be in the range (0.17-3.3) ×10-4 and (1.7-7.7) ×10-2 in the μμbb and ττbb final states, respectively. In the framework of models with two Higgs doublets and a complex scalar singlet (2HDM+S), the results of the two final states are combined to determine upper limits on the branching fraction B(H→a1a1→ℓℓbb) at 95% CL, with ℓ being a muon or a τ lepton. For different types of 2HDM+S, upper bounds on the branching fraction B(H→a1a1) are extracted from the combination of the two channels. In most of the Type II 2HDM+S parameter space, B(H→a1a1) values above 0.23 are excluded at 95% CL for ma1 values between 15 and 60GeV.
- Publication type
- Journal Article MeSH
We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton-proton collisions at an energy of s = 13 TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb - 1 . A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯ .
- Keywords
- CMS, Deep learning, Higgs boson, Jet energy, Jet resolution, b jets,
- Publication type
- Journal Article MeSH
A measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at [Formula: see text][Formula: see text]. The analysis exploits the [Formula: see text] decay in data corresponding to an integrated luminosity of 19.7[Formula: see text] collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities [Formula: see text], and with the photon of largest and next-to-largest transverse momentum ([Formula: see text]) divided by the diphoton mass [Formula: see text] satisfying the respective conditions of [Formula: see text] and [Formula: see text], the total fiducial cross section is [Formula: see text][Formula: see text].
- Publication type
- Journal Article MeSH
Stringent limits are set on the long-lived lepton-like sector of the phenomenological minimal supersymmetric standard model (pMSSM) and the anomaly-mediated supersymmetry breaking (AMSB) model. The limits are derived from the results presented in a recent search for long-lived charged particles in proton-proton collisions, based on data collected by the CMS detector at a centre-of-mass energy of 8 TeV at the Large Hadron Collider. In the pMSSM parameter sub-space considered, 95.9 % of the points predicting charginos with a lifetime of at least 10 ns are excluded. These constraints on the pMSSM are the first obtained at the LHC. Charginos with a lifetime greater than 100 ns and masses up to about 800 GeV in the AMSB model are also excluded. The method described can also be used to set constraints on other models.
- Publication type
- Journal Article MeSH
Properties of the Higgs boson with mass near 125[Formula: see text] are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1[Formula: see text] at 7[Formula: see text] and up to 19.7[Formula: see text] at 8[Formula: see text]. From the high-resolution [Formula: see text] and [Formula: see text] channels, the mass of the Higgs boson is determined to be [Formula: see text]. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is [Formula: see text] at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.
- Publication type
- Journal Article MeSH