Most cited article - PubMed ID 25985877
Genetic testing of leiomyoma tissue in women younger than 30 years old might provide an effective screening approach for the hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC)
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
- MeSH
- Humans MeSH
- Kidney Neoplasms * MeSH
- World Health Organization MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Practice Guideline MeSH
An emerging group of high-grade renal cell carcinomas (RCCs), particularly carcinomas arising in the hereditary leiomyomatosis renal cell carcinoma syndrome (HLRCC), show fumarate hydratase (FH) gene mutation and loss of function. On the basis of similar cytomorphology and clinicopathologic features between these tumors and cases described as tubulocystic carcinomas with poorly differentiated foci (TC-PD) of infiltrative adenocarcinoma, we hypothesized a relationship between these entities. First, 29 RCCs with morphology of TC-PD were identified retrospectively and assessed for FH expression and aberrant succination (2SC) by immunohistochemistry (IHC), with targeted next-generation sequencing of 409 genes-including FH-performed on a subset. The 29 TC-PD RCCs included 21 males and 8 females, aged 16 to 86 years (median, 46), with tumors measuring 3 to 21 cm (median, 9) arising in the right (n=16) and left (n=13) kidneys. Family history or stigmata of HLRCC were identifiable only retrospectively in 3 (12%). These tumors were aggressive, with 79% showing perinephric extension, nodal involvement in 41%, and metastasis in 86%. Of these, 16 (55%) demonstrated loss of FH by IHC (14/14 with positive 2SC). In contrast, 5 (17%) showed a wild-type immunoprofile of FH+/2SC-. An intriguing group of 8 (28%) showed variable FH± positivity, but with strong/diffuse 2SC+. Next-generation sequencing revealed 8 cases with FH mutations, including 5 FH-/2SC+ and 3 FH±/2SC+ cases, but none in FH+/2SC- cases. Secondly, we retrospectively reviewed the morphology of 2 well-characterized cohorts of RCCs with FH-deficiency determined by IHC or sequencing (n=23 and n=9), unselected for TC-PD pattern, identifying the TC-PD morphology in 10 (31%). We conclude that RCCs with TC-PD morphology are enriched for FH deficiency, and we recommend additional workup, including referral to genetic counseling, for prospective cases. In addition, based on these and other observations, we propose the term "FH-deficient RCC" as a provisional term for tumors with a combination of suggestive morphology and immunophenotype but where genetic confirmation is unavailable upon diagnosis. This term will serve as a provisional nomenclature that will enable triage of individual cases for genetic counseling and testing, while designating these cases for prospective studies of their relationship to HLRCC.
- MeSH
- Neoplastic Syndromes, Hereditary pathology MeSH
- Adult MeSH
- Fumarate Hydratase deficiency genetics MeSH
- Immunohistochemistry MeSH
- Carcinoma, Renal Cell enzymology genetics pathology MeSH
- Leiomyomatosis pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Multiplex Polymerase Chain Reaction MeSH
- Uterine Neoplasms pathology MeSH
- Skin Neoplasms pathology MeSH
- Kidney Neoplasms enzymology genetics pathology MeSH
- Retrospective Studies MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fumarate Hydratase MeSH
Hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome secondary to germline fumarate hydratase (FH) mutation presents with cutaneous and uterine leiomyomas, and a distinctive aggressive renal carcinoma. Identification of HLRCC patients presenting first with uterine leiomyomas may allow early intervention for renal carcinoma. We reviewed the morphology and immunohistochemical (IHC) findings in patients with uterine leiomyomas and confirmed or presumed HLRCC. IHC was also performed on a tissue microarray of unselected uterine leiomyomas and leiomyosarcomas. FH-deficient leiomyomas underwent Sanger and massively parallel sequencing on formalin-fixed paraffin-embedded tissue. All 5 patients with HLRCC had at least 1 FH-deficient leiomyoma: defined as completely negative FH staining with positive internal controls. One percent (12/1152) of unselected uterine leiomyomas but 0 of 88 leiomyosarcomas were FH deficient. FH-deficient leiomyoma patients were younger (42.7 vs. 48.8 y, P=0.024) and commonly demonstrated a distinctive hemangiopericytomatous vasculature. Other features reported to be associated with FH-deficient leiomyomas (hypercellularity, nuclear atypia, inclusion-like nucleoli, stromal edema) were inconstantly present. Somatic FH mutations were identified in 6 of 10 informative unselected FH-deficient leiomyomas. None of these mutations were found in the germline. We conclude that, while the great majority of patients with HLRCC will have FH-deficient leiomyomas, 1% of all uterine leiomyomas are FH deficient usually due to somatic inactivation. Although IHC screening for FH may have a role in confirming patients at high risk for hereditary disease before genetic testing, prospective identification of FH-deficient leiomyomas is of limited clinical benefit in screening unselected patients because of the relatively high incidence of somatic mutations.
- MeSH
- Tissue Array Analysis MeSH
- Neoplastic Syndromes, Hereditary MeSH
- Adult MeSH
- Phenotype MeSH
- Fumarate Hydratase deficiency genetics MeSH
- Genetic Predisposition to Disease MeSH
- Immunohistochemistry MeSH
- Leiomyomatosis enzymology genetics pathology surgery MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation MeSH
- DNA Mutational Analysis MeSH
- Biomarkers, Tumor deficiency genetics MeSH
- Uterine Neoplasms enzymology genetics pathology surgery MeSH
- Skin Neoplasms enzymology genetics pathology surgery MeSH
- Prognosis MeSH
- Syndrome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Fumarate Hydratase MeSH
- Biomarkers, Tumor MeSH