Nejvíce citovaný článek - PubMed ID 26091762
The invasive fish tapeworm Atractolytocestus huronensis (Cestoda), a parasite of carp, colonises Africa
The tapeworms of fishes (Chondrichthyes and Actinopterygii) account one-third (1670 from around 5000) of the total tapeworm (Platyhelminthes: Cestoda) species diversity. In total 1186 species from 9 orders occur as adults in elasmobranchs (sharks, rays and chimaeras), and 484 species from 8 orders mature in ray-finned fishes (referred to here as teleosts). Teleost tapeworms are dominated by freshwater species (78%), but only 3% of elasmobranch tapeworms are known from freshwater rays of South America and Asia (Borneo). In the last 2 decades, vast progress has been made in understanding species diversity, host associations and interrelationships among fish tapeworms. In total, 172 new species have been described since 2017 (149 from elasmobranchs and 23 from teleosts; invalidly described taxa are not included, especially those from the Oriental region). Molecular data, however, largely limited to a few molecular markers (mainly 28S rDNA, but also 18S and cox1), are available for about 40% of fish tapeworm species. They allowed us to significantly improve our understanding of their interrelationships, including proposals of a new, more natural classification at the higher-taxonomy level (orders and families) as well as at the lower-taxonomy level (genera). In this review, we summarize the main advances and provide perspectives for future research.
- Klíčová slova
- DNA sequencing, Distribution, elasmobranchs, host associations, pathogens, phylogenetic relationships, ray-finned fish, species diversity, taxonomy,
- MeSH
- Cestoda * genetika MeSH
- cestodózy * epidemiologie veterinární MeSH
- Diphyllobothrium * MeSH
- Elasmobranchii * MeSH
- fylogeneze MeSH
- nemoci ryb * epidemiologie MeSH
- ryby MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: A cytogenetic analysis of the new local triploid population of the caryophyllidean tapeworm Atractolytocestus huronensis, a unique parthenogenetic species with the ability to colonise new regions, was performed to understand the inner structure of its chromosome complement. METHODS: A karyotype analysis was carried out using classical Giemsa staining and C-banding combined with fluorescent DAPI staining. A hypothesis that triplets are composed from three homologue chromosomes of approximately the same length and same centromere position was tested statistically for multiple dependent variables using a non-parametric Friedman's ANOVA. The chromosomal location of ribosomal DNA clusters within the nucleolar organization region (NORs) and telomeric (TTAGGG)n sequences were detected by fluorescent in situ hybridization (FISH). Chromosomes were subjected to AgNO3 staining in order to determine whether the rDNA sites represent active NORs. RESULTS: The cytogenetic analysis confirmed the karyotype composed from eight chromosome triplets (3n = 24) as well as the existence of a pair of NORs located on each chromosome of the second triplet. Six NORs varied their activity from cell to cell, and it was reflected in the numbers of nucleoli (from 1 to 5). A huge morphological diversification of homologue chromosomes was originally detected in six out of eight triplets; the homologue elements differed significantly either in length and/or morphology, and some of them carried discernible interstitial telomeric sequences (ITSs), while the end telomeres were minute. The heterochromatin bands with high AT content varied irregularly, and the course of aberrant spermatogenesis was evident. CONCLUSIONS: Diversification of homologues is a unique phenomenon very likely caused by the long-term absence of a recombination and consequential accumulation of chromosome rearrangements in the genome of A. huronensis during species evolution. Unalterable asexual reproduction of the tapeworm, along with international trade in its host (carp), is facilitating its ongoing spread.
- Klíčová slova
- Aberrant meiosis, Cestoda, Diversification of homologues, Interstitial telomere sequences (ITSs), Polyploidy,
- MeSH
- Cestoda klasifikace genetika fyziologie MeSH
- chromozomy MeSH
- kapři parazitologie MeSH
- karyotypizace MeSH
- nemoci ryb parazitologie MeSH
- rozmnožování MeSH
- spermatocyty cytologie MeSH
- triploidie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH