Most cited article - PubMed ID 26525734
Body size, swimming speed, or thermal sensitivity? Predator-imposed selection on amphibian larvae
Coexistence of species with similar requirements is allowed, among others, through trade-offs between competitive ability and other ecological traits. Although interspecific competition is based on two mechanisms, exploitation of resources and physical interference, trade-off studies largely consider only species' ability to exploit resources. Using a mesocosm experiment, we examined the trade-off between interference competition ability and susceptibility to predation in larvae of two newt species, Ichthyosaura alpestris and Lissotriton vulgaris. In the presence of heterospecifics, L. vulgaris larvae slowed somatic growth and developmental rates, and experienced a higher frequency of injuries than in conspecific environments which suggests asymmetrical interspecific interference. During short-term predation trials, L. vulgaris larvae suffered higher mortality than I. alpestris. Larvae of the smaller species, L. vulgaris, had both lower interference and antipredator performance than the larger I. alpestris, which suggests a lack of trade-off between interference competition ability and predator susceptibility. We conclude that interference competition may produce a positive rather than negative relationship with predation susceptibility, which may contribute to the elimination of subordinate species from common habitats.
- Keywords
- amphibians, interspecific aggression, predator‐prey interaction, somatic growth, species coexistence,
- Publication type
- Journal Article MeSH
BACKGROUND: Many animals rely on their escape performance during predator encounters. Because of its dependence on body size and temperature, escape velocity is fully characterized by three measures, absolute value, size-corrected value, and its response to temperature (thermal sensitivity). The primary target of the selection imposed by predators is poorly understood. We examined predator (dragonfly larva)-imposed selection on prey (newt larvae) body size and characteristics of escape velocity using replicated and controlled predation experiments under seminatural conditions. Specifically, because these species experience a wide range of temperatures throughout their larval phases, we predict that larvae achieving high swimming velocities across temperatures will have a selective advantage over more thermally sensitive individuals. RESULTS: Nonzero selection differentials indicated that predators selected for prey body size and both absolute and size-corrected maximum swimming velocity. Comparison of selection differentials with control confirmed selection only on body size, i.e., dragonfly larvae preferably preyed on small newt larvae. Maximum swimming velocity and its thermal sensitivity showed low group repeatability, which contributed to non-detectable selection on both characteristics of escape performance. CONCLUSIONS: In the newt-dragonfly larvae interaction, body size plays a more important role than maximum values and thermal sensitivity of swimming velocity during predator escape. This corroborates the general importance of body size in predator-prey interactions. The absence of an appropriate control in predation experiments may lead to potentially misleading conclusions about the primary target of predator-imposed selection. Insights from predation experiments contribute to our understanding of the link between performance and fitness, and further improve mechanistic models of predator-prey interactions and food web dynamics.
- MeSH
- Larva anatomy & histology physiology MeSH
- Tail anatomy & histology physiology MeSH
- Swimming MeSH
- Food Chain * MeSH
- Salamandridae anatomy & histology growth & development physiology MeSH
- Temperature MeSH
- Odonata growth & development physiology MeSH
- Body Size MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH