No trade-offs in interspecific interference ability and predation susceptibility in newt larvae
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30271569
PubMed Central
PMC6157682
DOI
10.1002/ece3.4465
PII: ECE34465
Knihovny.cz E-zdroje
- Klíčová slova
- amphibians, interspecific aggression, predator‐prey interaction, somatic growth, species coexistence,
- Publikační typ
- časopisecké články MeSH
Coexistence of species with similar requirements is allowed, among others, through trade-offs between competitive ability and other ecological traits. Although interspecific competition is based on two mechanisms, exploitation of resources and physical interference, trade-off studies largely consider only species' ability to exploit resources. Using a mesocosm experiment, we examined the trade-off between interference competition ability and susceptibility to predation in larvae of two newt species, Ichthyosaura alpestris and Lissotriton vulgaris. In the presence of heterospecifics, L. vulgaris larvae slowed somatic growth and developmental rates, and experienced a higher frequency of injuries than in conspecific environments which suggests asymmetrical interspecific interference. During short-term predation trials, L. vulgaris larvae suffered higher mortality than I. alpestris. Larvae of the smaller species, L. vulgaris, had both lower interference and antipredator performance than the larger I. alpestris, which suggests a lack of trade-off between interference competition ability and predator susceptibility. We conclude that interference competition may produce a positive rather than negative relationship with predation susceptibility, which may contribute to the elimination of subordinate species from common habitats.
Department of Botany and Zoology Masaryk University Brno Czech Republic
Institute of Biology and Ecology Faculty of Science P J Šafárik University Košice Slovakia
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Amarasekare, P. (2002). Interference competition and species coexistence. Proceedings of the Royal Society B, 269, 2541–2550. 10.1098/rspb.2002.2181 PubMed DOI PMC
Anderson, T. L. , & Semlitsch, R. D. (2016). Top predators and habitat complexity alter an intraguild predation module in pond communities. Journal of Animal Ecology, 85, 548–558. 10.1111/1365-2656.12462 PubMed DOI
Arendt, J. D. (2009). Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata). Oecologia, 159, 455–461. 10.1007/s00442-008-1210-z PubMed DOI
Arntzen, J. W. , King, T. M. , Denoel, M. , Martinez‐Solano, I. , & Wallis, G. P. (2016). Provenance of Ichthyosaura alpestris (Caudata: Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis. Herpetological Journal, 26, 49–56.
Babik, W. (1998). Intrageneric predation in larval newts (Triturus, Salamandridae, Urodela). Amphibia‐Reptilia, 19, 446–451. 10.1163/156853898X00133 DOI
Balogová, M. , & Gvoždík, L. (2015). Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE, 10, e0128155 10.1371/journal.pone.0128155 PubMed DOI PMC
Bell, B. D. , & Bell, A. P. (1995). Distribution of the introduced alpine newt Triturus alpestris and of native Triturus species in North Shropshire, England. Australian Journal of Ecology, 20, 367–375. 10.1111/j.1442-9993.1995.tb00552.x DOI
Bestelmeyer, B. T. (2000). The trade‐off between thermal tolerance and behavioural dominance in a subtropical South American ant community. Journal of Animal Ecology, 69, 998–1009. 10.1046/j.1365-2656.2000.00455.x DOI
Braz, E. , & Joly, P. (1994). Microhabitat use, resource partitioning and ecological succession in a size‐structured guild of newt larvae (Triturus, Caudata, Amphibia). Archiv fur Hydrobiologie, 131, 129–139.
Brodie, E. D. , & Formanowicz, D. R. (1983). Prey size preference of predators: Differential vulnerability of larval anurans. Herpetologica, 39, 67–75.
Cadotte, M. W. , Mai, D. V. , Jantz, S. , Collins, M. D. , Keele, M. , & Drake, J. A. (2006). On testing the competition‐colonization trade‐off in a multispecies assemblage. American Naturalist, 168, 704–709. PubMed
Calsbeek, R. , & Kuchta, S. (2011). Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica). BMC Evolutionary Biology, 11, 353 10.1186/1471-2148-11-353 PubMed DOI PMC
Canty, A. , & Ripley, B. (2017). boot: Bootstrap R (S‐Plus) functions. R package version 1.3‐19.
Chase, J. M. (2011). Niche theory In Scheiner S., & Willig M. (Eds.), The theory of ecology (pp. 93–107). Chicago, IL: Univ Chicago Press.
Chase, J. M. , & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago, IL: Univ Chicago Press; 10.7208/chicago/9780226101811.001.0001 DOI
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI
Cothran, R. D. , Henderson, K. A. , Schmidenberg, D. , & Relyea, R. A. (2013). Phenotypically similar but ecologically distinct: Differences in competitive ability and predation risk among amphipods. Oikos, 122, 1429–1440.
Delong, J. P. , & Vasseur, D. A. (2013). Linked exploitation and interference competition drives the variable behavior of a classic predator‐prey system. Oikos, 122, 1393–1400.
Díaz‐Paniagua, C. (1989). Oviposition behavior of Triturus marmoratus pygmaeus . Journal of Herpetology, 23, 159–163. 10.2307/1564022 DOI
Earl, J. E. , & Whiteman, H. H. (2015). Are commonly used fitness predictors accurate? A meta‐analysis of amphibian size and age at metamorphosis. Copeia, 103, 297–309. 10.1643/CH-14-128 DOI
Fasola, M. , (1993). Resource partitioning by three species of newts during their aquatic phase. Ecography, 16, 73–81. 10.1111/j.1600-0587.1993.tb00060.x DOI
Grether, G. F. , Anderson, C. F. , Drury, J. P. , Kirschel, A. N. G. , Losin, N. , Okamoto, K. , & Peiman, K. S. (2013). The evolutionary consequences of interspecific aggression. Annals of the New York Academy of Sciences, 1289, 48–68. 10.1111/nyas.12082 PubMed DOI
Grether, G. F. , Losin, N. , Anderson, C. N. , & Okamoto, K. (2009). The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biological Reviews, 84, 617–635. 10.1111/j.1469-185X.2009.00089.x PubMed DOI
Griffiths, R. A. , Dewijer, P. , & May, R. T. (1994). Predation and competition within an assemblage of larval newts (Triturus). Ecography, 17, 176–181. 10.1111/j.1600-0587.1994.tb00091.x DOI
Gvoždík, L. , & Smolinský, R. (2015). Body size, swimming speed, or thermal sensitivity? Predator‐imposed selection on amphibian larvae. BMC Evolutionary Biology, 15, 238. PubMed PMC
Harris, R. N. (1987). An experimental study of population regulation in the salamander, Notophthalmus viridescens dorsalis (Urodela, Salamandridae). Oecologia, 71, 280–285. 10.1007/BF00377296 PubMed DOI
Hildrew, A. G. , Raffaelli, D. , & Edmonds‐Brown, R. (2007). Body size: The structure and function of aquatic ecosystems. Cambridge: Cambridge Univ Press; 10.1017/CBO9780511611223 DOI
Holdridge, E. M. , Cuellar‐Gempeler, C. , & terHorst, C. P. (2016). A shift from exploitation to interference competition with increasing density affects population and community dynamics. Ecology and Evolution, 6, 5333–5341. 10.1002/ece3.2284 PubMed DOI PMC
Holt, R. D. , Grover, J. , & Tilman, D. (1994). Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist, 144, 741–771. 10.1086/285705 DOI
Hothorn, T. , Hornik, K. , van de Wiel, M. A. , & Zeileis, A. (2006). A lego system for conditional inference. American Statistician, 60, 257–263. 10.1198/000313006X118430 DOI
Janča, M. , & Gvoždík, L. (2017). Costly neighbors: Heterospecific competitive interactions increase metabolic rates in dominant species. Scientific Reports, 7, 5177. PubMed PMC
Johnson, J. B. , Burt, D. B. , & DeWitt, T. J. (2008). Form, function, and fitness: Pathways to survival. Evolution, 62, 1243–1251. 10.1111/j.1558-5646.2008.00343.x PubMed DOI
Kishida, O. , Trussell, G. C. , Ohno, A. , Kuwano, S. , Ikawa, T. , & Nishimura, K. (2011). Predation risk suppresses the positive feedback between size structure and cannibalism. Journal of Animal Ecology, 80, 1278–1287. 10.1111/j.1365-2656.2011.01871.x PubMed DOI
Kneitel, J. M. , & Chase, J. M. (2004). Trade‐offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69–80. 10.1046/j.1461-0248.2003.00551.x DOI
Kopp, K. , Wachlevski, M. , & Eterovick, P. C. (2006). Environmental complexity reduces tadpole predation by water bugs. Canadian Journal of Zoology, 84, 136–140. 10.1139/z05-186 DOI
Kraaijeveld, A. R. , & Godfray, H. C. J. (1997). Trade‐off between parasitoid resistance and larval competitive ability in Drosophila melanogaster . Nature, 389, 278–280. 10.1038/38483 PubMed DOI
Kuang, J. J. , & Chesson, P. (2008). Predation‐competition interactions for seasonally recruiting species. American Naturalist, 171, E119–E133. 10.1086/527484 PubMed DOI
Kuzmin, S. I. (1991). Food resource allocation in larval newt guilds (genus Triturus). Amphibia‐Reptilia, 12, 293–304. 10.1163/156853891X00455 DOI
Leibold, M. A. (1996). A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist, 147, 784–812. 10.1086/285879 DOI
Levin, S. A. (1970). Community equilibria and stability, and an extension of competitive exclusion principle. American Naturalist, 104, 413–423. 10.1086/282676 DOI
Lynn, S. E. , Borkovic, B. P. , & Russell, A. P. (2013). Relative Apportioning of resources to the body and regenerating tail in juvenile leopard geckos (Eublepharis macularius) maintained on different dietary rations. Physiological and Biochemical Zoology, 86, 659–668. 10.1086/673312 PubMed DOI
Mitchell, M. D. , Bairos‐Novak, K. R. , & Ferrari, M. C. O. (2017). Mechanisms underlying the control of responses to predator odours in aquatic prey. Journal of Experimental Biology, 220, 1937–1946. 10.1242/jeb.135137 PubMed DOI
Morin, P. J. (1983). Predation, competition, and the composition of larval anuran guilds. Ecological Monographs, 53, 119–138. 10.2307/1942491 DOI
Murrell, E. G. , & Juliano, S. A. (2013). Predation resistance does not trade off with competitive ability in early‐colonizing mosquitoes. Oecologia, 173, 1033–1042. 10.1007/s00442-013-2674-z PubMed DOI PMC
Parker, G. A. (1974). Assessment strategy and the evolution of fighting behavior. Journal of Theoretical Biology, 47, 223–243. 10.1016/0022-5193(74)90111-8 PubMed DOI
Pawar, S. , Dell, A. I. , & Savage, V. (2012). Dimensionality of consumer search space drives trophic interaction strengths. Nature, 486, 485–489. 10.1038/nature11131 PubMed DOI
Peacor, S. D. , & Werner, E. E. (2001). The contribution of trait‐mediated indirect effects to the net effects of a predator. Proceedings of the National Academy of Sciences of the United States of America, 98, 3904–3908. 10.1073/pnas.071061998 PubMed DOI PMC
Peiman, K. S. , & Robinson, B. W. (2010). Ecology and evolution of resource‐related heterospecific aggression. The Quarterly Review of Biology, 85, 133–158. 10.1086/652374 PubMed DOI
Persson, L. (1985). Asymmetrical competition. Are larger animals competitively superior? American Naturalist, 126, 261–266. 10.1086/284413 DOI
Polis, G. A. , Myers, C. A. , & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330. 10.1146/annurev.es.20.110189.001501 DOI
Quinn, G. P. , & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 10.1017/CBO9780511806384 DOI
Schmidt, B. R. , & Van Buskirk, J. (2005). A comparative analysis of predator‐induced plasticity in larval Triturus newts. Journal of Evolutionary Biology, 18, 415–425. PubMed
Semlitsch, R. D. (1990). Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Canadian Journal of Zoology, 68, 1027–1030. 10.1139/z90-149 DOI
Semlitsch, R. D. , & Caldwell, J. P. (1982). Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki . Ecology, 63, 905–911. 10.2307/1937230 DOI
Semlitsch, R. D. , & Reichling, S. B. (1989). Density dependent injury in larval salamanders. Oecologia, 81, 100–103. 10.1007/BF00377017 PubMed DOI
Skelly, D. K. (1995). A behavioral trade‐off and its consequences for the distribution of Pseudacris treefrog larvae. Ecology, 76, 150–164. 10.2307/1940638 DOI
Smith, C. K. (1990). Effects of variation in body size on intraspecific competition among larval salamanders. Ecology, 71, 1777–1788. 10.2307/1937585 DOI
Smolinský, R. , & Gvoždík, L. (2013). Does developmental acclimatization reduce the susceptibility to predation in newt larvae? Biological Journal of the Linnean Society, 108, 109–115. 10.1111/j.1095-8312.2012.02004.x DOI
Speybroeck, J. , Beukema, W. , Bok, B. , Voort Van Der, J. , & Velikov, I. (2016). Field guide to amphibians and reptiles of Britain and Europe. London/New York: Bloomsbury.
Starostová, Z. , Gvoždík, L. , & Kratochvíl, L. (2017). An energetic perspective on tissue regeneration: The costs of tail autotomy in growing geckos. Comparative Biochemistry and Physiology – Part A, 206, 82–86. 10.1016/j.cbpa.2017.01.015 PubMed DOI
Szymura, J. M. (1974). Competitive situation in larvae of four sympatric species of newts (Triturus cristatus, T. alpestris, T. montandoni, and T. vulgaris) living in Poland. Acta Biologica Cracoviensia: Series Zoologia, 17, 235–262.
Travis, J. , Keen, W. H. , & Juilianna, J. (1985). The role of relative body size in a predator‐prey relationship between dragonfly naiads and larval anurans. Oikos, 45, 59–65. 10.2307/3565222 DOI
Underwood, A. J. (1997). Experiments in ecology. Cambridge: Cambridge Univ Press.
Urban, M. C. (2007). Risky prey behavior evolves in risky habitats. Proceedings of the National Academy of Sciences of the United States of America, 104, 14377–14382. 10.1073/pnas.0704645104 PubMed DOI PMC
Van Buskirk, J. (2005). Local and landscape influence on amphibian occurrence and abundance. Ecology, 86, 1936–1947. 10.1890/04-1237 DOI
Van Buskirk, J. (2007). Body size, competitive interactions, and the local distribution of Triturus newts. Journal of Animal Ecology, 76, 559–567. 10.1111/j.1365-2656.2007.01218.x PubMed DOI
Van Buskirk, J. , & Schmidt, B. R. (2000). Predator‐induced phenotypic plasticity in larval newts: Trade‐offs, selection, and variation in nature. Ecology, 81, 3009–3028. 10.2307/177397 DOI
Van Buskirk, J. , & Smith, D. C. (1991). Density‐dependent population regulation in a salamander. Ecology, 72, 1747–1756. 10.2307/1940973 DOI
Vervust, B. , Van Dongen, S. , Grbac, I. , & Van Damme, R. (2009). The mystery of the missing toes: Extreme levels of natural mutilation in island lizard populations. Functional Ecology, 23, 996–1003. 10.1111/j.1365-2435.2009.01580.x DOI
Vogrin, M. (2006). Micro‐habitat use within a guild of newt larvae (Trituridae[sic]) in an Alpine lake. Biologia, 61, 579–584.
Walls, S. C. , & Jaeger, R. G. (1987). Aggression and exploitation as mechanisms of competition in larval salamanders. Canadian Journal of Zoology, 65, 2938–2944. 10.1139/z87-446 DOI
Watson, S. , & Russell, A. P. (2000). A posthatching developmental staging table for the long‐toed salamander, Ambystoma macrodactylum krausei . Amphibia‐Reptilia, 21, 143–154. 10.1163/156853800507336 DOI
Wellborn, G. A. (2002). Trade‐off between competitive ability and antipredator adaptation in a freshwater amphipod species complex. Ecology, 83, 129–136. 10.1890/0012-9658(2002)083[0129:TOBCAA]2.0.CO;2 DOI
Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago: Univ Chicago Press; 10.7208/chicago/9780226893334.001.0001 DOI
Werner, E. E. (1986). Amphibian metamorphosis: Growth rate, predation risk, and the optimal size at transformation. American Naturalist, 128, 319–341. 10.1086/284565 DOI
Werner, E. E. , & Anholt, B. R. (1993). Ecological consequences of the trade‐off between growth and mortality rates mediated by foraging activity. American Naturalist, 142, 242–272. 10.1086/285537 PubMed DOI
Werner, E. E. , & McPeek, M. A. (1994). Direct and indirect effects of predators on two anuran species along an environmental gradient. Ecology, 75, 1368–1382. 10.2307/1937461 DOI
Wissinger, S. , & McGrady, J. (1993). Intraguild predation and competition between larval dragonflies: Direct and indirect effects on shared prey. Ecology, 74, 207–218. 10.2307/1939515 DOI
Wissinger, S. , Whiteman, H. , Sparks, G. , Rouse, G. L. , & Brown, W. S. (1999). Foraging trade‐offs along a predator‐permanence gradient in subalpine wetlands. Ecology, 80, 2102–2116.
Zhang, L. , Andersen, K. H. , Dieckmann, U. , & Brannstrom, A. (2015). Four types of interference competition and their impacts on the ecology and evolution of size‐structured populations and communities. Journal of Theoretical Biology, 380, 280–290. 10.1016/j.jtbi.2015.05.023 PubMed DOI
Dryad
10.5061/dryad.g59r413