No trade-offs in interspecific interference ability and predation susceptibility in newt larvae

. 2018 Sep ; 8 (17) : 9095-9104. [epub] 20180819

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30271569

Coexistence of species with similar requirements is allowed, among others, through trade-offs between competitive ability and other ecological traits. Although interspecific competition is based on two mechanisms, exploitation of resources and physical interference, trade-off studies largely consider only species' ability to exploit resources. Using a mesocosm experiment, we examined the trade-off between interference competition ability and susceptibility to predation in larvae of two newt species, Ichthyosaura alpestris and Lissotriton vulgaris. In the presence of heterospecifics, L. vulgaris larvae slowed somatic growth and developmental rates, and experienced a higher frequency of injuries than in conspecific environments which suggests asymmetrical interspecific interference. During short-term predation trials, L. vulgaris larvae suffered higher mortality than I. alpestris. Larvae of the smaller species, L. vulgaris, had both lower interference and antipredator performance than the larger I. alpestris, which suggests a lack of trade-off between interference competition ability and predator susceptibility. We conclude that interference competition may produce a positive rather than negative relationship with predation susceptibility, which may contribute to the elimination of subordinate species from common habitats.

Zobrazit více v PubMed

Amarasekare, P. (2002). Interference competition and species coexistence. Proceedings of the Royal Society B, 269, 2541–2550. 10.1098/rspb.2002.2181 PubMed DOI PMC

Anderson, T. L. , & Semlitsch, R. D. (2016). Top predators and habitat complexity alter an intraguild predation module in pond communities. Journal of Animal Ecology, 85, 548–558. 10.1111/1365-2656.12462 PubMed DOI

Arendt, J. D. (2009). Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata). Oecologia, 159, 455–461. 10.1007/s00442-008-1210-z PubMed DOI

Arntzen, J. W. , King, T. M. , Denoel, M. , Martinez‐Solano, I. , & Wallis, G. P. (2016). Provenance of Ichthyosaura alpestris (Caudata: Salamandridae) introductions to France and New Zealand assessed by mitochondrial DNA analysis. Herpetological Journal, 26, 49–56.

Babik, W. (1998). Intrageneric predation in larval newts (Triturus, Salamandridae, Urodela). Amphibia‐Reptilia, 19, 446–451. 10.1163/156853898X00133 DOI

Balogová, M. , & Gvoždík, L. (2015). Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE, 10, e0128155 10.1371/journal.pone.0128155 PubMed DOI PMC

Bell, B. D. , & Bell, A. P. (1995). Distribution of the introduced alpine newt Triturus alpestris and of native Triturus species in North Shropshire, England. Australian Journal of Ecology, 20, 367–375. 10.1111/j.1442-9993.1995.tb00552.x DOI

Bestelmeyer, B. T. (2000). The trade‐off between thermal tolerance and behavioural dominance in a subtropical South American ant community. Journal of Animal Ecology, 69, 998–1009. 10.1046/j.1365-2656.2000.00455.x DOI

Braz, E. , & Joly, P. (1994). Microhabitat use, resource partitioning and ecological succession in a size‐structured guild of newt larvae (Triturus, Caudata, Amphibia). Archiv fur Hydrobiologie, 131, 129–139.

Brodie, E. D. , & Formanowicz, D. R. (1983). Prey size preference of predators: Differential vulnerability of larval anurans. Herpetologica, 39, 67–75.

Cadotte, M. W. , Mai, D. V. , Jantz, S. , Collins, M. D. , Keele, M. , & Drake, J. A. (2006). On testing the competition‐colonization trade‐off in a multispecies assemblage. American Naturalist, 168, 704–709. PubMed

Calsbeek, R. , & Kuchta, S. (2011). Predator mediated selection and the impact of developmental stage on viability in wood frog tadpoles (Rana sylvatica). BMC Evolutionary Biology, 11, 353 10.1186/1471-2148-11-353 PubMed DOI PMC

Canty, A. , & Ripley, B. (2017). boot: Bootstrap R (S‐Plus) functions. R package version 1.3‐19.

Chase, J. M. (2011). Niche theory In Scheiner S., & Willig M. (Eds.), The theory of ecology (pp. 93–107). Chicago, IL: Univ Chicago Press.

Chase, J. M. , & Leibold, M. A. (2003). Ecological niches: Linking classical and contemporary approaches. Chicago, IL: Univ Chicago Press; 10.7208/chicago/9780226101811.001.0001 DOI

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31, 343–366. 10.1146/annurev.ecolsys.31.1.343 DOI

Cothran, R. D. , Henderson, K. A. , Schmidenberg, D. , & Relyea, R. A. (2013). Phenotypically similar but ecologically distinct: Differences in competitive ability and predation risk among amphipods. Oikos, 122, 1429–1440.

Delong, J. P. , & Vasseur, D. A. (2013). Linked exploitation and interference competition drives the variable behavior of a classic predator‐prey system. Oikos, 122, 1393–1400.

Díaz‐Paniagua, C. (1989). Oviposition behavior of Triturus marmoratus pygmaeus . Journal of Herpetology, 23, 159–163. 10.2307/1564022 DOI

Earl, J. E. , & Whiteman, H. H. (2015). Are commonly used fitness predictors accurate? A meta‐analysis of amphibian size and age at metamorphosis. Copeia, 103, 297–309. 10.1643/CH-14-128 DOI

Fasola, M. , (1993). Resource partitioning by three species of newts during their aquatic phase. Ecography, 16, 73–81. 10.1111/j.1600-0587.1993.tb00060.x DOI

Grether, G. F. , Anderson, C. F. , Drury, J. P. , Kirschel, A. N. G. , Losin, N. , Okamoto, K. , & Peiman, K. S. (2013). The evolutionary consequences of interspecific aggression. Annals of the New York Academy of Sciences, 1289, 48–68. 10.1111/nyas.12082 PubMed DOI

Grether, G. F. , Losin, N. , Anderson, C. N. , & Okamoto, K. (2009). The role of interspecific interference competition in character displacement and the evolution of competitor recognition. Biological Reviews, 84, 617–635. 10.1111/j.1469-185X.2009.00089.x PubMed DOI

Griffiths, R. A. , Dewijer, P. , & May, R. T. (1994). Predation and competition within an assemblage of larval newts (Triturus). Ecography, 17, 176–181. 10.1111/j.1600-0587.1994.tb00091.x DOI

Gvoždík, L. , & Smolinský, R. (2015). Body size, swimming speed, or thermal sensitivity? Predator‐imposed selection on amphibian larvae. BMC Evolutionary Biology, 15, 238. PubMed PMC

Harris, R. N. (1987). An experimental study of population regulation in the salamander, Notophthalmus viridescens dorsalis (Urodela, Salamandridae). Oecologia, 71, 280–285. 10.1007/BF00377296 PubMed DOI

Hildrew, A. G. , Raffaelli, D. , & Edmonds‐Brown, R. (2007). Body size: The structure and function of aquatic ecosystems. Cambridge: Cambridge Univ Press; 10.1017/CBO9780511611223 DOI

Holdridge, E. M. , Cuellar‐Gempeler, C. , & terHorst, C. P. (2016). A shift from exploitation to interference competition with increasing density affects population and community dynamics. Ecology and Evolution, 6, 5333–5341. 10.1002/ece3.2284 PubMed DOI PMC

Holt, R. D. , Grover, J. , & Tilman, D. (1994). Simple rules for interspecific dominance in systems with exploitative and apparent competition. American Naturalist, 144, 741–771. 10.1086/285705 DOI

Hothorn, T. , Hornik, K. , van de Wiel, M. A. , & Zeileis, A. (2006). A lego system for conditional inference. American Statistician, 60, 257–263. 10.1198/000313006X118430 DOI

Janča, M. , & Gvoždík, L. (2017). Costly neighbors: Heterospecific competitive interactions increase metabolic rates in dominant species. Scientific Reports, 7, 5177. PubMed PMC

Johnson, J. B. , Burt, D. B. , & DeWitt, T. J. (2008). Form, function, and fitness: Pathways to survival. Evolution, 62, 1243–1251. 10.1111/j.1558-5646.2008.00343.x PubMed DOI

Kishida, O. , Trussell, G. C. , Ohno, A. , Kuwano, S. , Ikawa, T. , & Nishimura, K. (2011). Predation risk suppresses the positive feedback between size structure and cannibalism. Journal of Animal Ecology, 80, 1278–1287. 10.1111/j.1365-2656.2011.01871.x PubMed DOI

Kneitel, J. M. , & Chase, J. M. (2004). Trade‐offs in community ecology: Linking spatial scales and species coexistence. Ecology Letters, 7, 69–80. 10.1046/j.1461-0248.2003.00551.x DOI

Kopp, K. , Wachlevski, M. , & Eterovick, P. C. (2006). Environmental complexity reduces tadpole predation by water bugs. Canadian Journal of Zoology, 84, 136–140. 10.1139/z05-186 DOI

Kraaijeveld, A. R. , & Godfray, H. C. J. (1997). Trade‐off between parasitoid resistance and larval competitive ability in Drosophila melanogaster . Nature, 389, 278–280. 10.1038/38483 PubMed DOI

Kuang, J. J. , & Chesson, P. (2008). Predation‐competition interactions for seasonally recruiting species. American Naturalist, 171, E119–E133. 10.1086/527484 PubMed DOI

Kuzmin, S. I. (1991). Food resource allocation in larval newt guilds (genus Triturus). Amphibia‐Reptilia, 12, 293–304. 10.1163/156853891X00455 DOI

Leibold, M. A. (1996). A graphical model of keystone predators in food webs: Trophic regulation of abundance, incidence, and diversity patterns in communities. American Naturalist, 147, 784–812. 10.1086/285879 DOI

Levin, S. A. (1970). Community equilibria and stability, and an extension of competitive exclusion principle. American Naturalist, 104, 413–423. 10.1086/282676 DOI

Lynn, S. E. , Borkovic, B. P. , & Russell, A. P. (2013). Relative Apportioning of resources to the body and regenerating tail in juvenile leopard geckos (Eublepharis macularius) maintained on different dietary rations. Physiological and Biochemical Zoology, 86, 659–668. 10.1086/673312 PubMed DOI

Mitchell, M. D. , Bairos‐Novak, K. R. , & Ferrari, M. C. O. (2017). Mechanisms underlying the control of responses to predator odours in aquatic prey. Journal of Experimental Biology, 220, 1937–1946. 10.1242/jeb.135137 PubMed DOI

Morin, P. J. (1983). Predation, competition, and the composition of larval anuran guilds. Ecological Monographs, 53, 119–138. 10.2307/1942491 DOI

Murrell, E. G. , & Juliano, S. A. (2013). Predation resistance does not trade off with competitive ability in early‐colonizing mosquitoes. Oecologia, 173, 1033–1042. 10.1007/s00442-013-2674-z PubMed DOI PMC

Parker, G. A. (1974). Assessment strategy and the evolution of fighting behavior. Journal of Theoretical Biology, 47, 223–243. 10.1016/0022-5193(74)90111-8 PubMed DOI

Pawar, S. , Dell, A. I. , & Savage, V. (2012). Dimensionality of consumer search space drives trophic interaction strengths. Nature, 486, 485–489. 10.1038/nature11131 PubMed DOI

Peacor, S. D. , & Werner, E. E. (2001). The contribution of trait‐mediated indirect effects to the net effects of a predator. Proceedings of the National Academy of Sciences of the United States of America, 98, 3904–3908. 10.1073/pnas.071061998 PubMed DOI PMC

Peiman, K. S. , & Robinson, B. W. (2010). Ecology and evolution of resource‐related heterospecific aggression. The Quarterly Review of Biology, 85, 133–158. 10.1086/652374 PubMed DOI

Persson, L. (1985). Asymmetrical competition. Are larger animals competitively superior? American Naturalist, 126, 261–266. 10.1086/284413 DOI

Polis, G. A. , Myers, C. A. , & Holt, R. D. (1989). The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review of Ecology and Systematics, 20, 297–330. 10.1146/annurev.es.20.110189.001501 DOI

Quinn, G. P. , & Keough, M. J. (2002). Experimental design and data analysis for biologists. Cambridge: Cambridge University Press; 10.1017/CBO9780511806384 DOI

Schmidt, B. R. , & Van Buskirk, J. (2005). A comparative analysis of predator‐induced plasticity in larval Triturus newts. Journal of Evolutionary Biology, 18, 415–425. PubMed

Semlitsch, R. D. (1990). Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Canadian Journal of Zoology, 68, 1027–1030. 10.1139/z90-149 DOI

Semlitsch, R. D. , & Caldwell, J. P. (1982). Effects of density on growth, metamorphosis, and survivorship in tadpoles of Scaphiopus holbrooki . Ecology, 63, 905–911. 10.2307/1937230 DOI

Semlitsch, R. D. , & Reichling, S. B. (1989). Density dependent injury in larval salamanders. Oecologia, 81, 100–103. 10.1007/BF00377017 PubMed DOI

Skelly, D. K. (1995). A behavioral trade‐off and its consequences for the distribution of Pseudacris treefrog larvae. Ecology, 76, 150–164. 10.2307/1940638 DOI

Smith, C. K. (1990). Effects of variation in body size on intraspecific competition among larval salamanders. Ecology, 71, 1777–1788. 10.2307/1937585 DOI

Smolinský, R. , & Gvoždík, L. (2013). Does developmental acclimatization reduce the susceptibility to predation in newt larvae? Biological Journal of the Linnean Society, 108, 109–115. 10.1111/j.1095-8312.2012.02004.x DOI

Speybroeck, J. , Beukema, W. , Bok, B. , Voort Van Der, J. , & Velikov, I. (2016). Field guide to amphibians and reptiles of Britain and Europe. London/New York: Bloomsbury.

Starostová, Z. , Gvoždík, L. , & Kratochvíl, L. (2017). An energetic perspective on tissue regeneration: The costs of tail autotomy in growing geckos. Comparative Biochemistry and Physiology – Part A, 206, 82–86. 10.1016/j.cbpa.2017.01.015 PubMed DOI

Szymura, J. M. (1974). Competitive situation in larvae of four sympatric species of newts (Triturus cristatus, T. alpestris, T. montandoni, and T. vulgaris) living in Poland. Acta Biologica Cracoviensia: Series Zoologia, 17, 235–262.

Travis, J. , Keen, W. H. , & Juilianna, J. (1985). The role of relative body size in a predator‐prey relationship between dragonfly naiads and larval anurans. Oikos, 45, 59–65. 10.2307/3565222 DOI

Underwood, A. J. (1997). Experiments in ecology. Cambridge: Cambridge Univ Press.

Urban, M. C. (2007). Risky prey behavior evolves in risky habitats. Proceedings of the National Academy of Sciences of the United States of America, 104, 14377–14382. 10.1073/pnas.0704645104 PubMed DOI PMC

Van Buskirk, J. (2005). Local and landscape influence on amphibian occurrence and abundance. Ecology, 86, 1936–1947. 10.1890/04-1237 DOI

Van Buskirk, J. (2007). Body size, competitive interactions, and the local distribution of Triturus newts. Journal of Animal Ecology, 76, 559–567. 10.1111/j.1365-2656.2007.01218.x PubMed DOI

Van Buskirk, J. , & Schmidt, B. R. (2000). Predator‐induced phenotypic plasticity in larval newts: Trade‐offs, selection, and variation in nature. Ecology, 81, 3009–3028. 10.2307/177397 DOI

Van Buskirk, J. , & Smith, D. C. (1991). Density‐dependent population regulation in a salamander. Ecology, 72, 1747–1756. 10.2307/1940973 DOI

Vervust, B. , Van Dongen, S. , Grbac, I. , & Van Damme, R. (2009). The mystery of the missing toes: Extreme levels of natural mutilation in island lizard populations. Functional Ecology, 23, 996–1003. 10.1111/j.1365-2435.2009.01580.x DOI

Vogrin, M. (2006). Micro‐habitat use within a guild of newt larvae (Trituridae[sic]) in an Alpine lake. Biologia, 61, 579–584.

Walls, S. C. , & Jaeger, R. G. (1987). Aggression and exploitation as mechanisms of competition in larval salamanders. Canadian Journal of Zoology, 65, 2938–2944. 10.1139/z87-446 DOI

Watson, S. , & Russell, A. P. (2000). A posthatching developmental staging table for the long‐toed salamander, Ambystoma macrodactylum krausei . Amphibia‐Reptilia, 21, 143–154. 10.1163/156853800507336 DOI

Wellborn, G. A. (2002). Trade‐off between competitive ability and antipredator adaptation in a freshwater amphipod species complex. Ecology, 83, 129–136. 10.1890/0012-9658(2002)083[0129:TOBCAA]2.0.CO;2 DOI

Wells, K. D. (2007). The ecology and behavior of amphibians. Chicago: Univ Chicago Press; 10.7208/chicago/9780226893334.001.0001 DOI

Werner, E. E. (1986). Amphibian metamorphosis: Growth rate, predation risk, and the optimal size at transformation. American Naturalist, 128, 319–341. 10.1086/284565 DOI

Werner, E. E. , & Anholt, B. R. (1993). Ecological consequences of the trade‐off between growth and mortality rates mediated by foraging activity. American Naturalist, 142, 242–272. 10.1086/285537 PubMed DOI

Werner, E. E. , & McPeek, M. A. (1994). Direct and indirect effects of predators on two anuran species along an environmental gradient. Ecology, 75, 1368–1382. 10.2307/1937461 DOI

Wissinger, S. , & McGrady, J. (1993). Intraguild predation and competition between larval dragonflies: Direct and indirect effects on shared prey. Ecology, 74, 207–218. 10.2307/1939515 DOI

Wissinger, S. , Whiteman, H. , Sparks, G. , Rouse, G. L. , & Brown, W. S. (1999). Foraging trade‐offs along a predator‐permanence gradient in subalpine wetlands. Ecology, 80, 2102–2116.

Zhang, L. , Andersen, K. H. , Dieckmann, U. , & Brannstrom, A. (2015). Four types of interference competition and their impacts on the ecology and evolution of size‐structured populations and communities. Journal of Theoretical Biology, 380, 280–290. 10.1016/j.jtbi.2015.05.023 PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Underwater sound production varies within not between species in sympatric newts

. 2019 ; 7 () : e6649. [epub] 20190328

Zobrazit více v PubMed

Dryad
10.5061/dryad.g59r413

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...