Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25993482
PubMed Central
PMC4439017
DOI
10.1371/journal.pone.0128155
PII: PONE-D-15-02022
Knihovny.cz E-resources
- MeSH
- Species Specificity MeSH
- Adaptation, Physiological * MeSH
- Salamandridae physiology MeSH
- Sympatry physiology MeSH
- Body Temperature MeSH
- Body Temperature Regulation physiology MeSH
- Water * MeSH
- Hot Temperature * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Water * MeSH
Many ectotherms effectively reduce their exposure to low or high environmental temperatures using behavioral thermoregulation. In terrestrial ectotherms, thermoregulatory strategies range from accurate thermoregulation to thermoconformity according to the costs and limits of thermoregulation, while in aquatic taxa the quantification of behavioral thermoregulation have received limited attention. We examined thermoregulation in two sympatric newt species, Ichthyosaura alpestris and Lissotriton vulgaris, exposed to elevated water temperatures under semi-natural conditions. According to a recent theory, we predicted that species for which elevated water temperatures pose a lower thermal quality habitat, would thermoregulate more effectively than species in thermally benign conditions. In the laboratory thermal gradient, L. vulgaris maintained higher body temperatures than I. alpestris. Semi-natural thermal conditions provided better thermal quality of habitat for L. vulgaris than for I. alpestris. Thermoregulatory indices indicated that I. alpestris actively thermoregulated its body temperature, whereas L. vulgaris remained passive to the thermal heterogeneity of aquatic environment. In the face of elevated water temperatures, sympatric newt species employed disparate thermoregulatory strategies according to the species-specific quality of the thermal habitat. Both strategies reduced newt exposure to suboptimal water temperatures with the same accuracy but with or without the costs of thermoregulation. The quantification of behavioral thermoregulation proves to be an important conceptual and methodological tool for thermal ecology studies not only in terrestrial but also in aquatic ectotherms.
Institute of Biology and Ecology Faculty of Science P J Šafárik University Košice Slovakia
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic Brno Czech Republic
See more in PubMed
Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008; 6: 2621–2626. 10.1371/journal.pbio.0060325 PubMed DOI PMC
Kearney M, Shine R, Porter WP. The potential for behavioral thermoregulation to buffer "cold-blooded" animals against climate warming. Proc Natl Acad Sci USA. 2009; 106: 3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC
Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Natl Acad Sci USA. 2014; 111: 5610–5615. 10.1073/pnas.1316145111 PubMed DOI PMC
Huey RB, Deutsch CA, Tewksbury JJ, Vitt LJ, Hertz PE, Perez HJ, et al. Why tropical forest lizards are vulnerable to climate warming. Proc R Soc B. 2009; 276: 1939–1948. 10.1098/rspb.2008.1957 PubMed DOI PMC
Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Villagran-Santa Cruz M, et al. Erosion of lizard diversity by climate change and altered thermal niches. Science. 2010; 328: 894–899. 10.1126/science.1184695 PubMed DOI
Hutchison VH, Dupré RK. Thermoregulation In: Feder ME, Burggren WW, editors. Environmental physiology of amphibians. Chicago: University of Chicago Press; 1992. pp. 206–249.
Lancaster J, Downes BJ. Aquatic entomology. Oxford: Oxford University Press; 2013.
Johnson JA, Kelsch SW. Effects of evolutionary thermal environment on temperature-preference relationships in fishes. Environ Biol Fishes. 1998; 53: 447–458.
Martin TL, Huey RB. Why "suboptimal" is optimal: Jensen's inequality and ectotherm thermal preferences. Am Nat. 2008; 171: E102–E118. 10.1086/527502 PubMed DOI
Azócar DLM, Vanhooydonck B, Bonino MF, Perotti MG, Abdala CS, Schulte JA, et al. Chasing the Patagonian sun: comparative thermal biology of Liolaemus lizards. Oecologia. 2013; 171: 773–788. 10.1007/s00442-012-2447-0 PubMed DOI
Vickers M, Manicom C, Schwarzkopf L. Extending the cost-benefit model of thermoregulation: high-temperature environments. Am Nat. 2011; 177: 452–461. 10.1086/658150 PubMed DOI
Marek V, Gvoždík L. The insensitivity of thermal preferences to various thermal gradient profiles in newts. J Ethol. 2012; 30: 35–41.
Hadamová M, Gvoždík L. Seasonal acclimation of preferred body temperatures improves the opportunity for thermoregulation in newts. Physiol Biochem Zool. 2011; 84: 166–174. 10.1086/658202 PubMed DOI
Roček Z, Joly P, Grossenbacher K. Triturus alpestris (Laurenti, 1768)—Bergmolch In: Grossenbacher K, Thiesmeier B, editors. Handbuch der Amphibien und Reptilien Europas. Schwanzlurche II A. Wiesbaden: Aula Verlag; 2003. pp. 607–656.
Schmidtler JF, Franzen M. Triturus vulgaris (Linnaeus, 1758)—Teichmolch In: Grossenbacher K, Thiesmeier B, editors. Handbuch der Amphibien und Reptilien Europas. Schwanzlurche II B. Wiesbaden: Aula Verlag; 2004. pp. 847–967.
Van Buskirk J. Local and landscape influence on amphibian occurrence and abundance. Ecology. 2005; 86: 1936–1947.
Dvořák J, Gvoždík L. Adaptive accuracy of temperature oviposition preferences in newts. Evol Ecol. 2010; 24: 1115–1127.
Šamajová P, Gvoždík L. The influence of temperature on diving behaviour in the alpine newt, Triturus alpestris . J Therm Biol. 2009; 34: 401–405.
Kurdíková V, Smolinský R, Gvoždík L. Mothers matter too: Benefits of temperature oviposition preferences in newts. PLoS ONE. 2011; 6: e23842 10.1371/journal.pone.0023842 PubMed DOI PMC
Gvoždík L. Postprandial thermophily in the Danube crested newt, Triturus dobrogicus . J Therm Biol. 2003; 28: 545–550.
Gvoždík L. Does reproduction influence temperature preferences in newts? Can J Zool. 2005; 83: 1038–1044.
Griffiths RA, Mylotte VJ. Microhabitat selection and feeding relations of smooth and warty newts, Triturus vulgaris and T. cristatus, at an upland pond in mid-Wales. Holarct Ecol. 1987; 10: 1–7.
Lutterschmidt WI, Hutchison VH. The critical thermal maximum: data to support the onset of spasms as the definitive end point. Can J Zool. 1997; 75: 1553–1560.
Hertz PE, Huey RB, Stevenson RD. Evaluating temperature regulation by field-active ectotherms: the fallacy of the inappropriate question. Am Nat. 1993; 142: 796–818. 10.1086/285573 PubMed DOI
Blouin-Demers G, Weatherhead PJ. Thermal ecology of black rat snakes (Elaphe obsoleta) in a thermally challenging environment. Ecology. 2001; 82: 3025–3043.
Zuur A, Ieno EN, Walker N, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. New York: Springer; 2009.
Fay MP, Shaw PA. Exact and asymptotic weighted logrank tests for interval censored data: the interval R package. J Stat Soft. 2010; 36: 1–34. PubMed PMC
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and nonlinear mixed effects models; 2014 Available: http://CRAN.R-project.org/package=nlme.
Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions; 2014. Available: http://CRAN.R-project.org/package=boot.
R Development Core Team. R: a language and environment for statistical computing, Version 3.1.1; 2014. Available: http://www.R-project.org.
Angilleta MJ. Thermal adaptation. Oxford: Oxford University Press; 2009.
Gvoždík L. Mismatch between ectotherm thermal preferenda and optima for swimming: a test of the evolutionary pace hypothesis. Evol Biol. 2015; 42: 137–145.
Smolinský R, Gvoždík L. Interactive influence of biotic and abiotic cues on the plasticity of preferred body temperatures in a predator-prey system. Oecologia. 2012; 170: 47–55. 10.1007/s00442-012-2283-2 PubMed DOI
Blouin-Demers G, Nadeau P. The cost-benefit model of thermoregulation does not predict lizard thermoregulatory behavior. Ecology. 2005; 86: 560–566.
Fasola M, Canova L. Residence in water by the newts Triturus vulgaris, T. cristatus and T. alpestris in a pond in northern Italy. Amphib Reptil. 1992; 13: 227–233.
Auld JR, Agrawal AA, Relyea RA. Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc R Soc B. 2010; 277: 503–511. 10.1098/rspb.2009.1355 PubMed DOI PMC
Smolinský R, Gvoždík L. Does developmental acclimatization reduce the susceptibility to predation in newt larvae? Biol J Linn Soc. 2013; 108: 109–115.
Smolinský R, Gvoždík L. Effect of temperature extremes on the spatial dynamics of predator—prey interactions: A case study with dragonfly nymphs and newt larvae. J Therm Biol. 2014: 39: 12–16.
Gvoždík L. To heat or to save time? Thermoregulation in the lizard, Zootoca vivipara (Squamata: Lacertidae) in different thermal environments along an altitudinal gradient. Can J Zool. 2002; 80: 479–492.
Valdecantos S, Martinez V, Lobo F, Cruz FB. Thermal biology of Liolaemus lizards from the high Andes: Being efficient despite adversity. J Therm Biol. 2013; 38: 126–134.
Shine R, Madsen T. Is thermoregulation unimportant for most reptiles? An example using water pythons (Liasis fuscus) in tropical Australia. Physiol Zool. 1996; 69: 252–269.
No trade-offs in interspecific interference ability and predation susceptibility in newt larvae
Dryad
10.5061/dryad.TN32C