Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28701786
PubMed Central
PMC5507852
DOI
10.1038/s41598-017-05485-9
PII: 10.1038/s41598-017-05485-9
Knihovny.cz E-zdroje
- MeSH
- bazální metabolismus * MeSH
- chování zvířat MeSH
- druhová specificita MeSH
- energetický metabolismus * MeSH
- kvantitativní znak dědičný MeSH
- lokomoce MeSH
- Salamandridae metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The energy costs of self-maintenance (standard metabolic rate, SMR) vary substantially among individuals within a population. Despite the importance of SMR for understanding life history strategies, ecological sources of SMR variation remain only partially understood. Stress-mediated increases in SMR are common in subordinate individuals within a population, while the direction and magnitude of the SMR shift induced by interspecific competitive interactions is largely unknown. Using laboratory experiments, we examined the influence of con- and heterospecific pairing on SMR, spontaneous activity, and somatic growth rates in the sympatrically living juvenile newts Ichthyosaura alpestris and Lissotriton vulgaris. The experimental pairing had little influence on SMR and growth rates in the smaller species, L. vulgaris. Individuals exposed to con- and heterospecific interactions were more active than individually reared newts. In the larger species, I. alpestris, heterospecific interactions induced SMR to increase beyond values of individually reared counterparts. Individuals from heterospecific pairs and larger conspecifics grew faster than did newts in other groups. The plastic shift in SMR was independent of the variation in growth rate and activity level. These results reveal a new source of individual SMR variation and potential costs of co-occurrence in ecologically similar taxa.
Department of Botany and Zoology Masaryk University Kotlářská 267 2 611 37 Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 60365 Brno Czech Republic
Zobrazit více v PubMed
Speakman, J. R. Doubly labelled water: theory and practice (London: Chapman and Hall, 1997).
Nilsson JA. Metabolic consequences of hard work. Proc. R. Soc. B-Biol. Sci. 2002;269:1735–1739. doi: 10.1098/rspb.2002.2071. PubMed DOI PMC
Chappell MA, Garland T, Robertson GF, Saltzman W. Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. J. Exp. Biol. 2007;210:4179–4197. doi: 10.1242/jeb.006163. PubMed DOI
Biro PA, Stamps JA. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 2010;25:653–659. doi: 10.1016/j.tree.2010.08.003. PubMed DOI
Nagy KA, Girard IA, Brown TK. Energetics of free-ranging mammals, reptiles, and birds. Ann. Rev. Nutr. 1999;19:247–277. doi: 10.1146/annurev.nutr.19.1.247. PubMed DOI
Artacho P, Nespolo RF. Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum) Evolution. 2009;63:1044–1050. doi: 10.1111/j.1558-5646.2008.00603.x. PubMed DOI
Boratynski Z, Koteja P. Sexual and natural selection on body mass and metabolic rates in free-living bank voles. Funct. Ecol. 2010;24:1252–1261. doi: 10.1111/j.1365-2435.2010.01764.x. DOI
Burton T, Killen SS, Armstrong JD, Metcalfe NB. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B-Biol. Sci. 2011;278:3465–3473. doi: 10.1098/rspb.2011.1778. PubMed DOI PMC
Speakman JR, Krol E, Johnson MS. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 2004;77:900–915. doi: 10.1086/427059. PubMed DOI
Careau V, Thomas D, Humphries MM, Reále D. Energy metabolism and animal personality. Oikos. 2008;117:641–653. doi: 10.1111/j.0030-1299.2008.16513.x. DOI
Metcalfe NB, Taylor AC, Thorpe JE. Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim. Behav. 1995;49:431–436. doi: 10.1006/anbe.1995.0056. DOI
Millidine K, Metcalfe NB, Armstrong J. Presence of a conspecific causes divergent changes in resting metabolism, depending on its relative size. Proc. R. Soc. B-Biol. Sci. 2009;276:3989–3993. doi: 10.1098/rspb.2009.1219. PubMed DOI PMC
Hou C, Kaspari M, Vander Zanden HB, Gillooly JF. Energetic basis of colonial living in social insects. Proc. Natl. Acad. Sci. USA. 2010;107:3634–3638. doi: 10.1073/pnas.0908071107. PubMed DOI PMC
DeLong JP, Hanley TC, Vasseur DA. Competition and the density dependence of metabolic rates. J. Anim. Ecol. 2014;83:51–58. doi: 10.1111/1365-2656.12065. PubMed DOI
Sloman KA, Motherwell G, O’Connor KI, Taylor AC. The effect of social stress on the standard metabolic rate (SMR) of brown trout. Salmo trutta. Fish Physiol. Biochem. 2000;23:49–53. doi: 10.1023/A:1007855100185. DOI
Peiman KS, Robinson BW. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 2010;85:133–158. doi: 10.1086/652374. PubMed DOI
Grether GF, et al. The evolutionary consequences of interspecific aggression. Ann. N.Y. Acad. Sci. 2013;1289:48–68. doi: 10.1111/nyas.12082. PubMed DOI
Ros AFH, Vullioud P, Bruintjes R, Vallat A, Bshary R. Intra- and interspecific challenges modulate cortisol but not androgen levels in a year-round territorial damselfish. J. Exp. Biol. 2014;217:1768–1774. doi: 10.1242/jeb.093666. PubMed DOI
Van Buskirk J. Body size, competitive interactions, and the local distribution of Triturus newts. J. Anim. Ecol. 2007;76:559–567. doi: 10.1111/j.1365-2656.2007.01218.x. PubMed DOI
Walls SC. Interference competition in postmetamorphic salamanders: Interspecific differences in aggression by coexisting species. Ecology. 1990;71:307–314. doi: 10.2307/1940270. DOI
Smyers SD, Rubbo MJ, Townsend VR, Swart CC. Intra- and interspecific characterizations of burrow use and defense by juvenile ambystomatid salamanders. Herpetologica. 2002;58:422–429. doi: 10.1655/0018-0831(2002)058[0422:IAICOB]2.0.CO;2. DOI
Rosenfeld J, Van Leeuwen T, Richards J, Allen D. Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids. J. Anim. Ecol. 2015;84:4–20. doi: 10.1111/1365-2656.12260. PubMed DOI
Gvoždík L, Kristín P. Economic thermoregulatory response explains mismatch between thermal physiology and behavior in newts. J. Exp. Biol. 2017;220:1106–1111. doi: 10.1242/jeb.145573. PubMed DOI
Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. Environmental stressors alter relationships between physiology and behaviour. Trends Ecol. Evol. 2013;28:651–658. doi: 10.1016/j.tree.2013.05.005. PubMed DOI
Schubert SN, et al. Exposure to pheromones increases plasma corticosterone concentrations in a terrestrial salamander. Gen. Comp. Endocrinol. 2009;161:271–275. doi: 10.1016/j.ygcen.2009.01.013. PubMed DOI
Wack CL, et al. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2012;161:153–158. doi: 10.1016/j.cbpa.2011.10.017. PubMed DOI
Mathot KJ, Dingemanse NJ. Energetics and behavior: unrequited needs and new directions. Trends Ecol. Evol. 2015;30:199–206. doi: 10.1016/j.tree.2015.01.010. PubMed DOI
Nussbaum SE, Ousterhout BH, Semlitsch RD. Agonistic behavior and resource defense among sympatric juvenile pond breeding salamanders. J. Herpetol. 2016;50:388–393. doi: 10.1670/15-160. DOI
Kristín P, Gvoždík L. Aquatic-to-terrestrial habitat shift reduces energy expenditure in newts. J. Exp. Zool. A-Ecol. Genet. Physiol. 2014;321:183–188. doi: 10.1002/jez.1849. PubMed DOI
Podhajský L, Gvoždík L. Variation in winter metabolic reduction between sympatric amphibians. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2016;201:110–114. doi: 10.1016/j.cbpa.2016.07.003. PubMed DOI
Zhang L, Andersen KH, Dieckmann U, Brännström A. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities. J. Theor. Biol. 2015;380:280–290. doi: 10.1016/j.jtbi.2015.05.023. PubMed DOI
Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science. 2001;293:2248–2251. doi: 10.1126/science.1061967. PubMed DOI
Van Buskirk J, Schmidt BR. Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology. 2000;81:3009–3028. doi: 10.2307/177397. DOI
Šamajová P, Gvoždík L. Inaccurate or disparate temperature cues? Seasonal acclimation of terrestrial and aquatic locomotor capacity in newts. Funct. Ecol. 2010;24:1023–1030. doi: 10.1111/j.1365-2435.2010.01720.x. DOI
Balogová M, Gvoždík L. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE. 2015;10:e0128155. doi: 10.1371/journal.pone.0128155. PubMed DOI PMC
Kristín P, Gvoždík L. Influence of respirometry methods on intraspecific variation in standard metabolic rates in newts. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2012;163:147–151. doi: 10.1016/j.cbpa.2012.05.201. PubMed DOI
Lighton, J. R. B. Measuring metabolic rates: a manual for scientists (Oxford: Oxford University Press, 2008).
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300.
Underwater sound production varies within not between species in sympatric newts
No trade-offs in interspecific interference ability and predation susceptibility in newt larvae