Costly neighbours: Heterospecific competitive interactions increase metabolic rates in dominant species

. 2017 Jul 12 ; 7 (1) : 5177. [epub] 20170712

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28701786
Odkazy

PubMed 28701786
PubMed Central PMC5507852
DOI 10.1038/s41598-017-05485-9
PII: 10.1038/s41598-017-05485-9
Knihovny.cz E-zdroje

The energy costs of self-maintenance (standard metabolic rate, SMR) vary substantially among individuals within a population. Despite the importance of SMR for understanding life history strategies, ecological sources of SMR variation remain only partially understood. Stress-mediated increases in SMR are common in subordinate individuals within a population, while the direction and magnitude of the SMR shift induced by interspecific competitive interactions is largely unknown. Using laboratory experiments, we examined the influence of con- and heterospecific pairing on SMR, spontaneous activity, and somatic growth rates in the sympatrically living juvenile newts Ichthyosaura alpestris and Lissotriton vulgaris. The experimental pairing had little influence on SMR and growth rates in the smaller species, L. vulgaris. Individuals exposed to con- and heterospecific interactions were more active than individually reared newts. In the larger species, I. alpestris, heterospecific interactions induced SMR to increase beyond values of individually reared counterparts. Individuals from heterospecific pairs and larger conspecifics grew faster than did newts in other groups. The plastic shift in SMR was independent of the variation in growth rate and activity level. These results reveal a new source of individual SMR variation and potential costs of co-occurrence in ecologically similar taxa.

Zobrazit více v PubMed

Speakman, J. R. Doubly labelled water: theory and practice (London: Chapman and Hall, 1997).

Nilsson JA. Metabolic consequences of hard work. Proc. R. Soc. B-Biol. Sci. 2002;269:1735–1739. doi: 10.1098/rspb.2002.2071. PubMed DOI PMC

Chappell MA, Garland T, Robertson GF, Saltzman W. Relationships among running performance, aerobic physiology and organ mass in male Mongolian gerbils. J. Exp. Biol. 2007;210:4179–4197. doi: 10.1242/jeb.006163. PubMed DOI

Biro PA, Stamps JA. Do consistent individual differences in metabolic rate promote consistent individual differences in behavior? Trends Ecol. Evol. 2010;25:653–659. doi: 10.1016/j.tree.2010.08.003. PubMed DOI

Nagy KA, Girard IA, Brown TK. Energetics of free-ranging mammals, reptiles, and birds. Ann. Rev. Nutr. 1999;19:247–277. doi: 10.1146/annurev.nutr.19.1.247. PubMed DOI

Artacho P, Nespolo RF. Natural selection reduces energy metabolism in the garden snail, Helix aspersa (Cornu aspersum) Evolution. 2009;63:1044–1050. doi: 10.1111/j.1558-5646.2008.00603.x. PubMed DOI

Boratynski Z, Koteja P. Sexual and natural selection on body mass and metabolic rates in free-living bank voles. Funct. Ecol. 2010;24:1252–1261. doi: 10.1111/j.1365-2435.2010.01764.x. DOI

Burton T, Killen SS, Armstrong JD, Metcalfe NB. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences? Proc. R. Soc. B-Biol. Sci. 2011;278:3465–3473. doi: 10.1098/rspb.2011.1778. PubMed DOI PMC

Speakman JR, Krol E, Johnson MS. The functional significance of individual variation in basal metabolic rate. Physiol. Biochem. Zool. 2004;77:900–915. doi: 10.1086/427059. PubMed DOI

Careau V, Thomas D, Humphries MM, Reále D. Energy metabolism and animal personality. Oikos. 2008;117:641–653. doi: 10.1111/j.0030-1299.2008.16513.x. DOI

Metcalfe NB, Taylor AC, Thorpe JE. Metabolic rate, social status and life-history strategies in Atlantic salmon. Anim. Behav. 1995;49:431–436. doi: 10.1006/anbe.1995.0056. DOI

Millidine K, Metcalfe NB, Armstrong J. Presence of a conspecific causes divergent changes in resting metabolism, depending on its relative size. Proc. R. Soc. B-Biol. Sci. 2009;276:3989–3993. doi: 10.1098/rspb.2009.1219. PubMed DOI PMC

Hou C, Kaspari M, Vander Zanden HB, Gillooly JF. Energetic basis of colonial living in social insects. Proc. Natl. Acad. Sci. USA. 2010;107:3634–3638. doi: 10.1073/pnas.0908071107. PubMed DOI PMC

DeLong JP, Hanley TC, Vasseur DA. Competition and the density dependence of metabolic rates. J. Anim. Ecol. 2014;83:51–58. doi: 10.1111/1365-2656.12065. PubMed DOI

Sloman KA, Motherwell G, O’Connor KI, Taylor AC. The effect of social stress on the standard metabolic rate (SMR) of brown trout. Salmo trutta. Fish Physiol. Biochem. 2000;23:49–53. doi: 10.1023/A:1007855100185. DOI

Peiman KS, Robinson BW. Ecology and evolution of resource-related heterospecific aggression. Q. Rev. Biol. 2010;85:133–158. doi: 10.1086/652374. PubMed DOI

Grether GF, et al. The evolutionary consequences of interspecific aggression. Ann. N.Y. Acad. Sci. 2013;1289:48–68. doi: 10.1111/nyas.12082. PubMed DOI

Ros AFH, Vullioud P, Bruintjes R, Vallat A, Bshary R. Intra- and interspecific challenges modulate cortisol but not androgen levels in a year-round territorial damselfish. J. Exp. Biol. 2014;217:1768–1774. doi: 10.1242/jeb.093666. PubMed DOI

Van Buskirk J. Body size, competitive interactions, and the local distribution of Triturus newts. J. Anim. Ecol. 2007;76:559–567. doi: 10.1111/j.1365-2656.2007.01218.x. PubMed DOI

Walls SC. Interference competition in postmetamorphic salamanders: Interspecific differences in aggression by coexisting species. Ecology. 1990;71:307–314. doi: 10.2307/1940270. DOI

Smyers SD, Rubbo MJ, Townsend VR, Swart CC. Intra- and interspecific characterizations of burrow use and defense by juvenile ambystomatid salamanders. Herpetologica. 2002;58:422–429. doi: 10.1655/0018-0831(2002)058[0422:IAICOB]2.0.CO;2. DOI

Rosenfeld J, Van Leeuwen T, Richards J, Allen D. Relationship between growth and standard metabolic rate: measurement artefacts and implications for habitat use and life-history adaptation in salmonids. J. Anim. Ecol. 2015;84:4–20. doi: 10.1111/1365-2656.12260. PubMed DOI

Gvoždík L, Kristín P. Economic thermoregulatory response explains mismatch between thermal physiology and behavior in newts. J. Exp. Biol. 2017;220:1106–1111. doi: 10.1242/jeb.145573. PubMed DOI

Killen SS, Marras S, Metcalfe NB, McKenzie DJ, Domenici P. Environmental stressors alter relationships between physiology and behaviour. Trends Ecol. Evol. 2013;28:651–658. doi: 10.1016/j.tree.2013.05.005. PubMed DOI

Schubert SN, et al. Exposure to pheromones increases plasma corticosterone concentrations in a terrestrial salamander. Gen. Comp. Endocrinol. 2009;161:271–275. doi: 10.1016/j.ygcen.2009.01.013. PubMed DOI

Wack CL, et al. Elevated plasma corticosterone increases metabolic rate in a terrestrial salamander. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2012;161:153–158. doi: 10.1016/j.cbpa.2011.10.017. PubMed DOI

Mathot KJ, Dingemanse NJ. Energetics and behavior: unrequited needs and new directions. Trends Ecol. Evol. 2015;30:199–206. doi: 10.1016/j.tree.2015.01.010. PubMed DOI

Nussbaum SE, Ousterhout BH, Semlitsch RD. Agonistic behavior and resource defense among sympatric juvenile pond breeding salamanders. J. Herpetol. 2016;50:388–393. doi: 10.1670/15-160. DOI

Kristín P, Gvoždík L. Aquatic-to-terrestrial habitat shift reduces energy expenditure in newts. J. Exp. Zool. A-Ecol. Genet. Physiol. 2014;321:183–188. doi: 10.1002/jez.1849. PubMed DOI

Podhajský L, Gvoždík L. Variation in winter metabolic reduction between sympatric amphibians. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2016;201:110–114. doi: 10.1016/j.cbpa.2016.07.003. PubMed DOI

Zhang L, Andersen KH, Dieckmann U, Brännström A. Four types of interference competition and their impacts on the ecology and evolution of size-structured populations and communities. J. Theor. Biol. 2015;380:280–290. doi: 10.1016/j.jtbi.2015.05.023. PubMed DOI

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science. 2001;293:2248–2251. doi: 10.1126/science.1061967. PubMed DOI

Van Buskirk J, Schmidt BR. Predator-induced phenotypic plasticity in larval newts: trade-offs, selection, and variation in nature. Ecology. 2000;81:3009–3028. doi: 10.2307/177397. DOI

Šamajová P, Gvoždík L. Inaccurate or disparate temperature cues? Seasonal acclimation of terrestrial and aquatic locomotor capacity in newts. Funct. Ecol. 2010;24:1023–1030. doi: 10.1111/j.1365-2435.2010.01720.x. DOI

Balogová M, Gvoždík L. Can newts cope with the heat? Disparate thermoregulatory strategies of two sympatric species in water. PLoS ONE. 2015;10:e0128155. doi: 10.1371/journal.pone.0128155. PubMed DOI PMC

Kristín P, Gvoždík L. Influence of respirometry methods on intraspecific variation in standard metabolic rates in newts. Comp. Biochem. Physiol. A-Mol. Integr. Physiol. 2012;163:147–151. doi: 10.1016/j.cbpa.2012.05.201. PubMed DOI

Lighton, J. R. B. Measuring metabolic rates: a manual for scientists (Oxford: Oxford University Press, 2008).

Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B. 1995;57:289–300.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...