Underwater sound production varies within not between species in sympatric newts
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
30944780
PubMed Central
PMC6441559
DOI
10.7717/peerj.6649
PII: 6649
Knihovny.cz E-resources
- Keywords
- Acoustic divergence, Acoustic interference, Amphibians, Individual variation, Salamander, Sound production, Species recognition,
- Publication type
- Journal Article MeSH
Sound production is a widespread phenomenon among animals. Effective sound use for mate or species recognition requires some acoustic differentiation at an individual or species level. Several species of caudate amphibians produce underwater sounds, but information about intra- and interspecific variation in their acoustic production is missing. We examined individual, sex, and species variation in underwater sound production in adults of two sympatric newt taxa, Ichthyosaura alpestris and Lissotriton vulgaris. Individual newts produced simple low- (peak frequency = 7-8 kHz) and mid-high frequency (14-17 kHz) clicks, which greatly overlap between sexes and species. Individual differences explained about 40-50% of total variation in sound parameters. These results provide foundations for further studies on the mechanisms and eco-evolutionary consequences of underwater acoustics in newts.
Department of Botany and Zoology Masaryk University Brno Czech Republic
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Akamatsu T, Okumura T, Novarini N, Yan HY. Empirical refinements applicable to the recording of fish sounds in small tanks. Journal of the Acoustical Society of America. 2002;112:3073–3082. doi: 10.1121/1.1515799. PubMed DOI
Amézquita A, Flechas SV, Lima AP, Gasser H, Hödl W. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:17058–17063. doi: 10.1073/pnas.1104773108. PubMed DOI PMC
Brinkløv S, Fenton MB, Ratcliffe JM. Echolocation in oilbirds and swiftlets. Frontiers in Physiology. 2013;4:123. doi: 10.3389/fphys.2013.00123. PubMed DOI PMC
Bulog B, Schlegel P. Functional morphology of the inner ear and underwater audiograms of Proteus anguinus (Amphibia, Urodela) European Journal of Physiology. 2000;439:R165–R167. doi: 10.1007/s004240000132. PubMed DOI
Canty A, Ripley B. boot: bootstrap R (S-plus) functions. R package version 1.3-19https://cran.r-project.org/web/packages/boot/index.html. [22 September 2017];2017
Christensen CB, Lauridsen H, Christensen-Dalsgaard J, Pedersen M, Madsen PT. Better than fish on land? Hearing across metamorphosis in salamanders. Proceedings of the Royal Society of London B. 2015;282:20141943. doi: 10.1098/rspb.2014.1943. PubMed DOI PMC
Cogälniceanu D. The relative importance of vision and olfaction in mate recognition in male newts (genus Triturus) Herpetologica. 1994;50:344–349.
Colleoni E, Denoël M, Padoa-Schioppa E, Scali S, Ficetola GF. Rensch’s rule and sexual dimorphism in salamanders: patterns and potential processes. Journal of Zoology. 2014;293:143–151. doi: 10.1111/jzo.12137. DOI
Crovo JA, Zeyl JN, Johnston CE. Hearing and sound production in the aquatic salamander, Amphiuma means. Herpetologica. 2016;72:167–173. doi: 10.1655/Herpetologica-D-15-00026.1. DOI
Davis JR, Brattstrom BH. Sounds produced by the California newt, Taricha torosa. Herpetologica. 1975;31:409–412.
Diego-Rasilla FJ, Luengo RM. Heterospecific call recognition and phonotaxis in the orientation behaviour of the marbled newt, Triturus marmoratus. Behavioral Ecology and Sociobiology. 2004;55:556–560. doi: 10.1007/s00265-003-0740-y. DOI
Diego-Rasilla FJ, Luengo RM. Acoustic orientation in the palmate newt, Lissotriton helveticus. Behavioral Ecology and Sociobiology. 2007;61:1329–1335. doi: 10.1007/s00265-007-0363-9. DOI
Gehlbach FR, Walker B. Acoustic behavior of the aquatic salamander, Siren intermedia. Bioscience. 1970;20:1107–1108. doi: 10.2307/1295417. DOI
Gerhardt HC, Schwartz JJ. Interspecific interactions in anuran courtship. In: Heatwole H, Sullivan BK, editors. Amphibian biology, Vol. 2, Social behavior. Surrey Beatty; Chipping Norton: 1995. pp. 603–632.
Griffin DR. Echolocation by blind men, bats and radar. Science. 1944;29:589–590. doi: 10.1126/science.100.2609.589. PubMed DOI
Hloušková M, Balogová M, Kršáková V, Gvoždík L. No trade-offs in interspecific interference ability and predation susceptibility in newt larvae. Ecology and Evolution. 2018;8:9095–9104. doi: 10.1002/ece3.4465. PubMed DOI PMC
Janča M, Gvoždík L. Costly neighbors: Heterospecific competitive interactions increase metabolic rates in dominant species. Scientific Reports. 2017;7:5177. doi: 10.1038/s41598-017-05485-9. PubMed DOI PMC
Leininger EC, Kelley DB. Evolution of courtship songs in Xenopus: vocal pattern generation and sound production. Cytogenetics and Genome Research. 2015;145:302–314. doi: 10.1159/000433483. PubMed DOI
Littlejohn MJ. Acoustic communication in anurans: an integrated and evolutionary approach. In: Taylor DH, Guttman SI, editors. The reproductive biology of amphibians. Plenum Press; New York: 1977. pp. 263–294.
Madden N, Jehle R. Acoustic orientation in the great crested newt (Triturus cristatus) Amphibia-Reptilia. 2017;38:57–65. doi: 10.1163/15685381-00003083. DOI
Malacarne G, Vellano C. Behavioral evidence of a courtship pheromone in the crested newt, Triturus cristatus carnifex Laurenti. Copeia. 1987;1987:245–247. doi: 10.2307/1446067. DOI
Maslin TP. The production of sound in caudate Amphibia. Series in Biology. 1950;1:29–45.
Pupin F, Sacchi R, Gentilli A, Galeotti P, Fasola M. Discrimination of toad calls by smooth newts: support for the heterospecific attraction hypothesis. Animal Behaviour. 2007;74:1683–1690. doi: 10.1016/j.anbehav.2007.03.020. DOI
Quinn GP, Keough MJ. Experimental design and data analysis for biologists. Cambridge University Press; Cambridge: 2002.
Roček Z, Joly P, Grossenbacher K. Triturus alpestris—Bergmolch. In: Thiesmeier B, Grossenbacher K, editors. Handbuch der amphibien und reptilien Europas. Schwanzlurche IIA. Aula Verlag; Wiebelsheim: 2003. pp. 607–656.
Schmidtler JF, Franzen M. Triturus vulgaris—Teichmolch. In: Thiesmeier B, Grossenbacher K, editors. Handbuch der amphibien und reptilien Europas. Schwanzlurche IIB. Aula Verlag; Wiebelsheim: 2004. pp. 847–967.
Siemers BM, Schauermann G, Turni H, Von Merten S. Why do shrews twitter? Communication or simple echo-based orientation. Biology Letters. 2009;5:593–596. doi: 10.1098/rsbl.2009.0378. PubMed DOI PMC
Smolinský R, Gvoždík L. Does developmental acclimatization reduce the susceptibility to predation in newt larvae? Biological Journal of the Linnean Society. 2013;108:109–115. doi: 10.1111/j.1095-8312.2012.02004.x. DOI
Treer D, Van Bocxlaer I, Matthijs S, Du Four D, Janssenswillen S, Willaert B, Bossuytet F. Love is blind: indiscriminate female mating responses to male courtship pheromones in newts (Salamandridae) PLOS ONE. 2013;8:e56538. doi: 10.1371/journal.pone.0056538. PubMed DOI PMC
Van Buskirk J. Body size, competitive interactions, and the local distribution of Triturus newts. Journal of Animal Ecology. 2007;76:559–567. doi: 10.1111/j.1365-2656.2007.01218.x. PubMed DOI
Wells KD. The ecology and behavior of amphibians. Chicago University Press; Chicago: 2007.
Wiens JJ, Sparreboom M, Arntzen JW. Crest evolution in newts: implications for reconstruction methods, sexual selection, phenotypic plasticity and the origin of novelties. Journal of Evolutionary Biology. 2011;24:2073–2086. doi: 10.1111/j.1420-9101.2011.02340.x. PubMed DOI
Wilkins MR, Seddon N, Safran RJ. Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology and Evolution. 2013;128:156–166. doi: 10.1016/j.tree.2012.10.002. PubMed DOI
Wyman RL, Thrall JH. Sound production by the spotted salamander, Ambystoma maculatum. Herpetologica. 1972;28:210–212.
Zeyl JN, Johnston CE. Comparative and developmental patterns of amphibious auditory function in salamanders. Journal of Comparative Physiology A. 2016;202:879–894. doi: 10.1007/s00359-016-1128-6. PubMed DOI
figshare
10.6084/m9.figshare.7228370.v1